2.Linux内核的内存管理的宏观到具体的全面理解(一)

    内存管理是Linux内核中5大组成系统中重要组成部分,对内存的理解帮助更深入的了解内核,查阅大量资料两篇博文是最有帮助的点击打开链接讲解逻辑地址,虚拟地址(线性地址)和物理地址之间的关系,讲解的很透彻,点击打开链接讲解为什么会产生内存管理的问题以及如何解决,带着这些前因后果去理解内核更容易深刻理解内存管理。

    一、问题产生背景:

    首先说明一点,内核管理问题产生的源头在于电脑的运行内存,与CPU直接打交道的内存,也就是RAM容量不够大,尤其是现在计算机动不动就运行大的程序或进程,而且同时运行几个进程,这样内存就明显不够,有人说,内存不够直接增加容量不就行了,但是计算机的小型化和CPU架构决定了,内存不能无限制增大,于是产生了内存管理的问题,目的就是通过将程序中暂时用不到的部分代码和数据转存在磁盘中,以磁盘的空间换取内存的空间,这样就给了进程有足够大内存的假象。在早期的计算机之中,程序直接运行在物理内存中,这是仅仅运行这样一个程序的话,只要程序所需要的内存不超过机器的物理内存就不会产生问题,也不用考虑内存管理的问题了,然而现在的系统都是支持多任务,多进程,就不得不考虑内存管理的问题了。

    举个例子,有三个程序,程序A,B,C.程序A运行的过程中需要20M内存,程序B运行需要110M内存,程序C运行的过程需要运行30M内存。如果系统同时运行程序A,B.那么早期的内存管理过程大概是这样的,将物理内存的前20M分配给A,接下来的20-130M分配给程序B.这时程序C也要运行,假设系统内存总共只有140M,显然这时程序C由于内存不够无法运行。所以这种内存管理存在几个明显的问题。

    1.进程地址空间不能隔离

    由于程序直接访问物理内存,这个时候程序用的内存空间不能隔离开来。举例来说,假如程序A的地址空间是0-20M这个范围内,如果这时程序A有一段代码是操作20-130M这段地址空间内的数据,那么程序B就会崩溃,很多恶意程序就是这样操作的。

    2.内存使用的效率低

    像上面提到的,加入我们非要啊,A,B,C三个程序同时运行,那么当我们运行程序C的时候,就要给C腾出足够大的内存空间,A所分配的内存空间对于C是不够的,所以我们只能把B的内存空间扔出来,于是我们把B的程序数据转存到磁盘中,然后将C的数据存到内存中运行,当要运行B时,再重新把B的数据转存到内存中,我们知道I/O操作非常费时,所以这个过程效率很低。

    3.程序运行的地址不能确定

    也就是程序每次运行时,都要在内存中划分一段连续的大段内存,这个空闲的内存是不能确定的,所以每次从磁盘中转存程序代码进内存时,都要耗去相当一部分时间在这个重定位的问题上。

    内存管理的终极目的就是想尽办法解决上面三个问题,如何是进程的地址空间隔离,如何提高内存的使用效率,如何解决程序运行时的重定位问题。

    这时虚拟内存的概念就出来了,目的就是解决上面的问题。虚拟内存位于程序和物理内存之间,程序只能看见虚拟内存,再也不能直接访问物理内存。每个程序都有自己独立的进程地址空间,这样就做到了进程隔离。这里的进程地址空间指虚拟地址。顾名思义,既然是虚拟地址,不是现实存在的地址空间。

    既然我们在程序和物理地址空间之间增加了虚拟地址,那么就要解决怎么从虚拟地址映射到物理地址,因为程序最终肯定是运行在物理内存中的,主要有分段和分页两种技术。

    

    分段(Segmentation):这种方法是人们最开始使用的一种方法,基本思路是将程序所需要的内存地址空间大小的虚拟空间映射到某个物理地址空间。

    段映射机制
    每个程序都有其独立的虚拟的独立的进程地址空间,可以看到程序A和B的虚拟地址空间都是从0x00000000开始的。我们将两块大小相同的虚拟地址空间和实际物理地址空间一一映射,即虚拟地址空间中的每个字节对应于实际地址空间中的每个字节,这个映射过程由软件来设置映射的机制,实际的转换由硬件来完成。
    这种分段的机制解决了文章一开始提到的3个问题中的进程地址空间隔离和程序地址重定位的问题。程序A和程序B有自己独立的虚拟地址空间,而且该虚拟地址空间被映射到了互相不重叠的物理地址空间,如果程序A访问虚拟地址空间的地址不在0x00000000-0x00A00000这个范围内,那么内核就会拒绝这个请求,所以它解决了隔离地址空间的问题。我们应用程序A只需要关心其虚拟地址空间0x00000000-0x00A00000,而其被映射到哪个物理地址我们无需关心,所以程序永远按照这个虚拟地址空间来放置变量,代码,不需要重新定位。

    无论如何分段机制解决了上面两个问题,是一个很大的进步,但是对于内存效率问题仍然无能为力。因为这种内存映射机制仍然是以程序为单位,当内存不足时仍然需要将整个程序交换到磁盘,这样内存使用的效率仍然很低。那么,怎么才算高效率的内存使用呢。事实上,根据程序的局部性运行原理,一个程序在运行的过程当中,在某个时间段内,只有一小部分数据会被经常用到。所以我们需要更加小粒度的内存分割和映射方法,此时是否会想到Linux中的Buddy算法和slab内存分配机制呢,哈哈。另一种将虚拟地址转换为物理地址的方法分页机制应运而生了。

    分页机制:
    分页机制就是把内存地址空间分为若干个很小的固定大小的页,每一页的大小由内存决定,就像Linux中ext文件系统将磁盘分成若干个Block一样,这样做是分别是为了提高内存和磁盘的利用率。试想以下,如果将磁盘空间分成N等份,每一份的大小(一个Block)是1M,如果我想存储在磁盘上的文件是1K字节,那么其余的999字节是不是浪费了。所以需要更加细粒度的磁盘分割方式,我们可以将Block设置得小一点,这当然是根据所存放文件的大小来综合考虑的,好像有点跑题了,我只是想说,内存中的分页机制跟ext文件系统中的磁盘分割机制非常相似。

    Linux中一般页的大小是4KB,我们把进程的地址空间按页分割,把常用的数据和代码页装载到内存中,不常用的代码和数据保存在磁盘中,我们还是以一个例子来说明,如下图:


    进程虚拟地址空间、物理地址空间和磁盘之间的页映射关系
    我们可以看到进程1和进程2的虚拟地址空间都被映射到了不连续的物理地址空间内(这个意义很大,如果有一天我们的连续物理地址空间不够,但是不连续的地址空间很多,如果没有这种技术,我们的程序就没有办法运行),甚至他们共用了一部分物理地址空间,这就是共享内存。
进程1的虚拟页VP2和VP3被交换到了磁盘中,在程序需要这两页的时候,Linux内核会产生一个缺页异常,然后异常管理程序会将其读到内存中。
这就是分页机制的原理,当然Linux中的分页机制的实现还是比较复杂的,通过了也全局目录,也上级目录,页中级目录,页表等几级的分页机制来实现的,但是基本的工作原理是不会变的。

分页机制的实现需要硬件的实现,这个硬件名字叫做MMU(Memory Management Unit),他就是专门负责从虚拟地址到物理地址转换的,也就是从虚拟页找到物理页。

    上面的讲解非常宏观的把握内存管理的理想,接下来具体讲解分页的实现方法,就会加深理解内存管理的思想,这个首先要清晰的理解几个概念,逻辑地址、虚拟地址、物理地址,这方面另一篇博客讲解的非常好。

    物理地址(physical address) 

    用于内存芯片级的单元寻址,与处理器和CPU连接的地址总线相对应。 物理地址——这个概念应该是这几个概念中最好理解的一个,但是值得一提的是,虽然可以直接把物理地址理解成插在机器上那根内存本身,把内存看成一个从0字节一直到最大空量逐字节的编号的大数组,然后把这个数组叫做物理地址,但是事实上,这只是一个硬件提供给软件的抽像,内存的寻址方式并不是这样。所以,说它是“与地址总线相对应”,是更贴切一些,不过抛开对物理内存寻址方式的考虑,直接把物理地址与物理的内存一一对应,也是可以接受的。也许错误的理解更利于形而上的抽像。

    虚拟内存(virtual memory) 

    这是对整个内存(不要与机器上插那条对上号)的抽像描述。它是相对于物理内存来讲的,可以直接理解成“不直实的”,“假的”内存,例如,一个0x08000000内存地址,它并不对就物理地址上那个大数组中0x08000000 - 1那个地址元素; 

    之所以是这样,是因为现代操作系统都提供了一种内存管理的抽像,即虚拟内存(virtual memory)。进程使用虚拟内存中的地址,由操作系统协助相关硬件,把它“转换”成真正的物理地址。这个“转换”,是所有问题讨论的关键。 
有了这样的抽像,一个程序,就可以使用比真实物理地址大得多的地址空间。(拆东墙,补西墙,银行也是这样子做的),甚至多个进程可以使用相同的地址。不奇怪,因为转换后的物理地址并非相同的。 虚拟地址——可以把连接后的程序反编译看一下,发现连接器已经为程序分配了一个地址,例如,要调用某个函数A,代码不是call A,而是call 0x0811111111 ,也就是说,函数A的地址已经被定下来了。没有这样的“转换”,没有虚拟地址的概念,这样做是根本行不通的。 
打住了,这个问题再说下去,就收不住了。
     逻辑地址(logical address) 
    Intel为了兼容,将远古时代的段式内存管理方式保留了下来。逻辑地址指的是机器语言指令中,用来指定一个操作数或者是一条指令的地址。以上例,我们说的连接器为A分配的0x08111111这个地址就是逻辑地址。 ——不过不好意思,这样说,好像又违背了Intel中段式管理中,对逻辑地址要求,“一个逻辑地址,是由一个段标识符加上一个指定段内相对地址的偏移量,表示为 [段标识符:段内偏移量],也就是说,上例中那个0x08111111,应该表示为[A的代码段标识符: 0x08111111],这样,才完整一些”
     线性地址(linear address)或也叫 虚拟地址(virtual address) 

    跟逻辑地址类似,它也是一个不真实的地址,如果逻辑地址是对应的硬件平台段式管理转换前地址的话,那么线性地址则对应了硬件页式内存的转换前地址。

    CPU将一个虚拟内存空间中的地址转换为物理地址,需要进行两步:首先将给定一个逻辑地址(其实是段内偏移量,这个一定要理解!!!),CPU要利用其段式内存管理单元,先将为个逻辑地址转换成一个线程地址,再利用其页式内存管理单元,转换为最终物理地址。

    这样做两次转换,的确是非常麻烦而且没有必要的,因为直接可以把线性地址抽像给进程。之所以这样冗余,Intel完全是为了兼容而已。

    CPU段式内存管理,逻辑地址如何转换为线性地址

    一个逻辑地址由两部份组成,段标识符: 段内偏移量。段标识符是由一个16位长的字段组成,称为段选择符。其中前13位是一个索引号。后面3位包含一些硬件细节,如图:


    最后两位涉及权限检查,本文中不包含。


    索引号,或者直接理解成数组下标——那它总要对应一个数组吧,它又是什么东东的索引呢?这个东东就是“段描述符(segment descriptor)”,呵呵,段描述符具体地址描述了一个段(对于“段”这个字眼的理解,我是把它想像成,拿了一把刀,把虚拟内存,砍成若干的截——段)。这样,很多个段描述符,就组了一个数组,叫“段描述符表”,这样,可以通过段标识符的前13位,直接在段描述符表中找到一个具体的段描述符,这个描述符就描述了一个段,我刚才对段的抽像不太准确,因为看看描述符里面究竟有什么东东——也就是它究竟是如何描述的,就理解段究竟有什么东东了,每一个段描述符由8个字节组成,如下图: 

    

    这些东东很复杂,虽然可以利用一个数据结构来定义它,不过,我这里只关心一样,就是Base字段,它描述了一个段的开始位置的线性地址。
    Intel设计的本意是,一些全局的段描述符,就放在“全局段描述符表(GDT)”中,一些局部的,例如每个进程自己的,就放在所谓的“局部段描述符表(LDT)”中。那究竟什么时候该用GDT,什么时候该用LDT呢?这是由段选择符中的T1字段表示的,=0,表示用GDT,=1表示用LDT。

    GDT在内存中的地址和大小存放在CPU的gdtr控制寄存器中,而LDT则在ldtr寄存器中。

    好多概念,像绕口令一样。这张图看起来要直观些:


    首先,给定一个完整的逻辑地址[段选择符:段内偏移地址], 
1、看段选择符的T1=0还是1,知道当前要转换是GDT中的段,还是LDT中的段,再根据相应寄存器,得到其地址和大小。我们就有了一个数组了。 
2、拿出段选择符中前13位,可以在这个数组中,查找到对应的段描述符,这样,它了Base,即基地址就知道了。 
3、把Base + offset,就是要转换的线性地址了。

    还是挺简单的,对于软件来讲,原则上就需要把硬件转换所需的信息准备好,就可以让硬件来完成这个转换了。OK,来看看Linux怎么做的。

接下来就是重点的页式管理


CPU的页式内存管理

    CPU的页式内存管理单元,负责把一个线性地址,最终翻译为一个物理地址。从管理和效率的角度出发,线性地址被分为以固定长度为单位的组,称为页(page),例如一个32位的机器,线性地址最大可为4G,可以用4KB为一个页来划分,这页,整个线性地址就被划分为一个tatol_page[2^20]的大数组,共有2的20个次方个页。这个大数组我们称之为页目录。目录中的每一个目录项,就是一个地址——对应的页的地址。

    另一类“页”,我们称之为物理页,或者是页框、页桢的。是分页单元把所有的物理内存也划分为固定长度的管理单位,它的长度一般与内存页是一一对应的。

    这里注意到,这个total_page数组有2^20个成员,每个成员是一个地址(32位机,一个地址也就是4字节),那么要单单要表示这么一个数组,就要占去4MB的内存空间。为了节省空间,引入了一个二级管理模式的机器来组织分页单元。文字描述太累,看图直观一些: 


    如上图, 
1、分页单元中,页目录是唯一的,它的地址放在CPU的cr3寄存器中,是进行地址转换的开始点。万里长征就从此长始了。 
2、每一个活动的进程,因为都有其独立的对应的虚似内存(页目录也是唯一的),那么它也对应了一个独立的页目录地址。——运行一个进程,需要将它的页目录地址放到cr3寄存器中,将别个的保存下来。 
3、每一个32位的线性地址被划分为三部份,面目录索引(10位):页表索引(10位):偏移(12位) 
依据以下步骤进行转换: 
1、从cr3中取出进程的页目录地址(操作系统负责在调度进程的时候,把这个地址装入对应寄存器); 
2、根据线性地址前十位,在数组中,找到对应的索引项,因为引入了二级管理模式,页目录中的项,不再是页的地址,而是一个页表的地址。(又引入了一个数组),页的地址被放到页表中去了。 
3、根据线性地址的中间十位,在页表(也是数组)中找到页的起始地址; 
4、将页的起始地址与线性地址中最后12位相加,得到最终我们想要的葫芦;


    这个转换过程,应该说还是非常简单地。全部由硬件完成,虽然多了一道手续,但是节约了大量的内存,还是值得的。那么再简单地验证一下: 
1、这样的二级模式是否仍能够表示4G的地址; 
页目录共有:2^10项,也就是说有这么多个页表 
每个目表对应了:2^10页; 
每个页中可寻址:2^12个字节。 
还是2^32 = 4GB

2、这样的二级模式是否真的节约了空间; 
也就是算一下页目录项和页表项共占空间 (2^10 * 4 + 2 ^10 *4) = 8KB。哎,……怎么说呢!!! 
红色错误,标注一下,后文贴中有此讨论。。。。。。 
按<深入理解计算机系统>中的解释,二级模式空间的节约是从两个方面实现的: 
A、如果一级页表中的一个页表条目为空,那么那所指的二级页表就根本不会存在。这表现出一种巨大的潜在节约,因为对于一个典型的程序,4GB虚拟地址空间的大部份都会是未分配的; 
B、只有一级页表才需要总是在主存中。虚拟存储器系统可以在需要时创建,并页面调入或调出二级页表,这就减少了主存的压力。只有最经常使用的二级页表才需要缓存在主存中。——不过Linux并没有完全享受这种福利,它的页表目录和与已分配页面相关的页表都是常驻内存的。

    值得一提的是,虽然页目录和页表中的项,都是4个字节,32位,但是它们都只用高20位,低12位屏蔽为0——把页表的低12屏蔽为0,是很好理解的,因为这样,它刚好和一个页面大小对应起来,大家都成整数增加。计算起来就方便多了。但是,为什么同时也要把页目录低12位屏蔽掉呢?因为按同样的道理,只要屏蔽其低10位就可以了,不过我想,因为12>10,这样,可以让页目录和页表使用相同的数据结构,方便。

    本文只介绍一般性转换的原理,扩展分页、页的保护机制、PAE模式的分页这些麻烦点的东东就不啰嗦了……可以参考其它专业书籍。

5.Linux的页式内存管理

原理上来讲,Linux只需要为每个进程分配好所需数据结构,放到内存中,然后在调度进程的时候,切换寄存器cr3,剩下的就交给硬件来完成了(呵呵,事实上要复杂得多,不过偶只分析最基本的流程)。

前面说了i386的二级页管理架构,不过有些CPU,还有三级,甚至四级架构,Linux为了在更高层次提供抽像,为每个CPU提供统一的界面。提供了一个四层页管理架构,来兼容这些二级、三级、四级管理架构的CPU。这四级分别为:

页全局目录PGD(对应刚才的页目录) 
页上级目录PUD(新引进的) 
页中间目录PMD(也就新引进的) 
页表PT(对应刚才的页表)。

整个转换依据硬件转换原理,只是多了二次数组的索引罢了,如下图:


    那么,对于使用二级管理架构32位的硬件,现在又是四级转换了,它们怎么能够协调地工作起来呢?嗯,来看这种情况下,怎么来划分线性地址吧!

    从硬件的角度,32位地址被分成了三部份——也就是说,不管理软件怎么做,最终落实到硬件,也只认识这三位老大。 
从软件的角度,由于多引入了两部份,,也就是说,共有五部份。——要让二层架构的硬件认识五部份也很容易,在地址划分的时候,将页上级目录和页中间目录的长度设置为0就可以了。 
这样,操作系统见到的是五部份,硬件还是按它死板的三部份划分,也不会出错,也就是说大家共建了和谐计算机系统。

    这样,虽说是多此一举,但是考虑到64位地址,使用四层转换架构的CPU,我们就不再把中间两个设为0了,这样,软件与硬件再次和谐——抽像就是强大呀!!!


    例如,一个逻辑地址已经被转换成了线性地址,0x08147258,换成二制进,也就是: 
0000100000 0101000111 001001011000 
内核对这个地址进行划分 
PGD = 0000100000 
PUD = 0 
PMD = 0 
PT = 0101000111 
offset = 001001011000

    现在来理解Linux针对硬件的花招,因为硬件根本看不到所谓PUD,PMD,所以,本质上要求PGD索引,直接就对应了PT的地址。而不是再到PUD和PMD中去查数组(虽然它们两个在线性地址中,长度为0,2^0 =1,也就是说,它们都是有一个数组元素的数组),那么,内核如何合理安排地址呢?

    从软件的角度上来讲,因为它的项只有一个,32位,刚好可以存放与PGD中长度一样的地址指针。那么所谓先到PUD,到到PMD中做映射转换,就变成了保持原值不变,一一转手就可以了。这样,就实现了“逻辑上指向一个PUD,再指向一个PDM,但在物理上是直接指向相应的PT的这个抽像,因为硬件根本不知道有PUD、PMD这个东西”。

然后交给硬件,硬件对这个地址进行划分,看到的是: 
页目录 = 0000100000 
PT = 0101000111 
offset = 001001011000 
嗯,先根据0000100000(32),在页目录数组中索引,找到其元素中的地址,取其高20位,找到页表的地址,页表的地址是由内核动态分配的,接着,再加一个offset,就是最终的物理地址了。

猜你喜欢

转载自blog.csdn.net/qq_27221271/article/details/80327870