第七讲 triangulation.cpp

#include <iostream>

#include <opencv2/core/core.hpp>

#include <opencv2/features2d/features2d.hpp>

#include <opencv2/highgui/highgui.hpp>

#include <opencv2/calib3d/calib3d.hpp>

// #include "extra.h" // used in opencv2

using namespace std;

using namespace cv;

 

void find_feature_matches (

    const Mat& img_1, const Mat& img_2,

    std::vector<KeyPoint>& keypoints_1,

    std::vector<KeyPoint>& keypoints_2,

    std::vector< DMatch >& matches );

 

void pose_estimation_2d2d (

    const std::vector<KeyPoint>& keypoints_1,

    const std::vector<KeyPoint>& keypoints_2,

    const std::vector< DMatch >& matches,

    Mat& R, Mat& t );

 

void triangulation (

    const vector<KeyPoint>& keypoint_1,

    const vector<KeyPoint>& keypoint_2,

    const std::vector< DMatch >& matches,

    const Mat& R, const Mat& t,

    vector<Point3d>& points

);

 

// 像素坐标转相机归一化坐标

Point2f pixel2cam( const Point2d& p, const Mat& K );

 

int main ( int argc, char** argv )

{

    if ( argc != 3 )

    {

        cout<<"usage: triangulation img1 img2"<<endl;

        return 1;

    }

    //-- 读取图像

    Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );

Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );

 

    vector<KeyPoint> keypoints_1, keypoints_2;

    vector<DMatch> matches;

    find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );

    cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;

 

    //-- 估计两张图像间运动

    Mat R,t;

    pose_estimation_2d2d ( keypoints_1, keypoints_2, matches, R, t );

 

    //-- 三角化

    vector<Point3d> points;

    triangulation( keypoints_1, keypoints_2, matches, R, t, points );

    

    //-- 验证三角化点与特征点的重投影关系(pt1_cam像素坐标到相机坐标系(归一化平面),pt1_cam_3d三角测量测出的相机坐标系(归一化平面)用R,T估计的)

    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );

    for ( int i=0; i<matches.size(); i++ )

    {

        Point2d pt1_cam = pixel2cam( keypoints_1[ matches[i].queryIdx ].pt, K );

        Point2d pt1_cam_3d(

            points[i].x/points[i].z, 

            points[i].y/points[i].z

        );

        

        cout<<"point in the first camera frame: "<<pt1_cam<<endl;

        cout<<"point projected from 3D "<<pt1_cam_3d<<", d="<<points[i].z<<endl;

        

        // 第二个图

        Point2f pt2_cam = pixel2cam( keypoints_2[ matches[i].trainIdx ].pt, K );

        Mat pt2_trans = R*( Mat_<double>(3,1) << points[i].x, points[i].y, points[i].z ) + t;

        pt2_trans /= pt2_trans.at<double>(2,0);

        cout<<"point in the second camera frame: "<<pt2_cam<<endl;

cout<<"point reprojected from second frame: "<<pt2_trans.t()<<endl;

        cout<<endl;

    }

    

    return 0;

}

 

void find_feature_matches ( const Mat& img_1, const Mat& img_2,

                            std::vector<KeyPoint>& keypoints_1,

                            std::vector<KeyPoint>& keypoints_2,

                            std::vector< DMatch >& matches )

{

    //-- 初始化

    Mat descriptors_1, descriptors_2;

    // used in OpenCV3

    Ptr<FeatureDetector> detector = ORB::create();

    Ptr<DescriptorExtractor> descriptor = ORB::create();

    // use this if you are in OpenCV2

    // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );

    // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );

    Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create("BruteForce-Hamming");

    //-- 第一步:检测 Oriented FAST 角点位置

    detector->detect ( img_1,keypoints_1 );

    detector->detect ( img_2,keypoints_2 );

 

    //-- 第二步:根据角点位置计算 BRIEF 描述子

    descriptor->compute ( img_1, keypoints_1, descriptors_1 );

    descriptor->compute ( img_2, keypoints_2, descriptors_2 );

 

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离

    vector<DMatch> match;

   // BFMatcher matcher ( NORM_HAMMING );

    matcher->match ( descriptors_1, descriptors_2, match );

 //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离

    for ( int i = 0; i < descriptors_1.rows; i++ )

    {

        double dist = match[i].distance;

        if ( dist < min_dist ) min_dist = dist;

        if ( dist > max_dist ) max_dist = dist;

    }

 

    printf ( "-- Max dist : %f \n", max_dist );

    printf ( "-- Min dist : %f \n", min_dist );

 

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.

    for ( int i = 0; i < descriptors_1.rows; i++ )

    {

        if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )

        {

            matches.push_back ( match[i] );

        }

    }

}

 

void pose_estimation_2d2d (

    const std::vector<KeyPoint>& keypoints_1,

    const std::vector<KeyPoint>& keypoints_2,

    const std::vector< DMatch >& matches,

    Mat& R, Mat& t )

{

    // 相机内参,TUM Freiburg2

    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );

 

    //-- 把匹配点转换为vector<Point2f>的形式

    vector<Point2f> points1;

    vector<Point2f> points2;

 

    for ( int i = 0; i < ( int ) matches.size(); i++ )

    {

        points1.push_back ( keypoints_1[matches[i].queryIdx].pt );

        points2.push_back ( keypoints_2[matches[i].trainIdx].pt );


 

    //-- 第四步:匹配点对筛选

    double min_dist=10000, max_dist=0;

//-- 计算基础矩阵

    Mat fundamental_matrix;

    fundamental_matrix = findFundamentalMat ( points1, points2, CV_FM_8POINT );

    cout<<"fundamental_matrix is "<<endl<< fundamental_matrix<<endl;

 

    //-- 计算本质矩阵

    Point2d principal_point ( 325.1, 249.7 );//相机主点, TUM dataset标定值

    int focal_length = 521;//相机焦距, TUM dataset标定值

    Mat essential_matrix;

    essential_matrix = findEssentialMat ( points1, points2, focal_length, principal_point );

    cout<<"essential_matrix is "<<endl<< essential_matrix<<endl;

 

    //-- 计算单应矩阵

    Mat homography_matrix;

    homography_matrix = findHomography ( points1, points2, RANSAC, 3 );

    cout<<"homography_matrix is "<<endl<<homography_matrix<<endl;

 

    //-- 从本质矩阵中恢复旋转和平移信息.

    recoverPose ( essential_matrix, points1, points2, R, t, focal_length, principal_point );

    cout<<"R is "<<endl<<R<<endl;

    cout<<"t is "<<endl<<t<<endl;

}

 

void triangulation ( 

    const vector< KeyPoint >& keypoint_1, 

    const vector< KeyPoint >& keypoint_2, 

    const std::vector< DMatch >& matches,

    const Mat& R, const Mat& t, 

    vector< Point3d >& points )

{

    Mat T1 = (Mat_<float> (3,4) <<//不旋转和不位移

        1,0,0,0,

        0,1,0,0,

        0,0,1,0);

 Mat T2 = (Mat_<float> (3,4) <<//求好的R,T

        R.at<double>(0,0), R.at<double>(0,1), R.at<double>(0,2), t.at<double>(0,0),

        R.at<double>(1,0), R.at<double>(1,1), R.at<double>(1,2), t.at<double>(1,0),

        R.at<double>(2,0), R.at<double>(2,1), R.at<double>(2,2), t.at<double>(2,0)

    );

    

    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );

    vector<Point2f> pts_1, pts_2;

    for ( DMatch m:matches )

    {

        // 将像素坐标转换至相机坐标

        pts_1.push_back ( pixel2cam( keypoint_1[m.queryIdx].pt, K) );

        pts_2.push_back ( pixel2cam( keypoint_2[m.trainIdx].pt, K) );

    }

    

    Mat pts_4d;

    cv::triangulatePoints( T1, T2, pts_1, pts_2, pts_4d );

//cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,CvMat* projPoints1, CvMat* projPoints2,CvMat* points4D);

    

    // 转换成非齐次坐标(如果把一个齐次坐标转换成普通坐标,把前三个坐标同时除以第4个坐标,然后去掉第4个分量)

    for ( int i=0; i<pts_4d.cols; i++ )

    {

        Mat x = pts_4d.col(i);

        x /= x.at<float>(3,0);

        Point3d p (

            x.at<float>(0,0), 

            x.at<float>(1,0), 

            x.at<float>(2,0) 

        );

        points.push_back( p );

    }

}

 

Point2f pixel2cam ( const Point2d& p, const Mat& K )

{

 return Point2f

    (

        ( p.x - K.at<double>(0,2) ) / K.at<double>(0,0), 

        ( p.y - K.at<double>(1,2) ) / K.at<double>(1,1) 

    );

}

 



猜你喜欢

转载自blog.csdn.net/qq_40213457/article/details/80971241
今日推荐