Unity&Shader基础篇-常用函数的使用与案例

一、前言

继前面的系列文章之后,本篇继续讲解Cg的常用函数的使用案例,帮助巩固Cg语言的基础知识。这些函数都可以在Cg的教程里The Cg Tutorial找到示例代码和函数意义。本文讲解几个常用的函数,分别有

1、Step(a,x):如果x<a返回0;如果x>或=a返回1

2、Clamp(x,a,a):如果x<a返回a;如果x>b返回b;如果在a和b之间就返回x

3、smoothstep(min,max,x):返回的值为–2*(( x  min )/( max  min ))3 +3*(( x  min )/( max  min ))2

4、lerp(a,b,f):线性插值函数,返回值为(1-f)*a+b*f

5、三角函数sin、cos

二、常用函数的使用实例

1、Step函数:在Unity中的Shader代码
Shader "Unlit/Chapter5-Step"
{
	Properties
	{
		_background("背景色",Color)=(0,0,0,0)
	}
	SubShader
	{
		// No culling or depth
		Cull Off ZWrite Off ZTest Always

		CGINCLUDE
		ENDCG


	Pass
	{
		CGPROGRAM
		#pragma vertex vert
		#pragma fragment frag

		#include "UnityCG.cginc"
		float4 _background;

	struct appdata
	{
		float4 vertex : POSITION;
		float2 uv : TEXCOORD0;
	};

	struct v2f
	{
		float2 uv : TEXCOORD0;
		float4 vertex : SV_POSITION;
	};

	v2f vert(appdata v)
	{
		v2f o;
		o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
		o.uv = v.uv;
		o.uv.y = 1 - o.uv.y;
		return o;
	}

	// Functions
	fixed4 frag(v2f i) : SV_Target
	{
		float2 r = 2.0*(i.uv - 0.5);
		//_ScreenParams是Unity内置的变量
		float aspectRatio = _ScreenParams.x / _ScreenParams.y;
		r.x *= aspectRatio;

		fixed3 pixel = _background.xyz;
		float edge, variable, ret;

		//将屏幕划分成五个部分

		//第一部分
		if (r.x < -0.6*aspectRatio)
		{
			variable = r.y;
			edge = 0.2;
			if (variable > edge)
			{
				ret = 1.0;
			}
			else
			{
				ret = 0;
			}
		}
		else if (r.x < -0.2*aspectRatio)
		{
			variable = r.y;
			edge = -0.2;
			//step(a,x):如果x<a结果返回0,反之返回1
			ret = step(edge, variable);
		}
		else if (r.x < 0.2*aspectRatio)
		{
			ret = 1.0 - step(0.5, r.y);
		}
		else if (r.x < 0.6*aspectRatio)
		{
			ret = 0.3 + 0.5*step(-0.4, r.y);
		}
		else
		{
			ret = step(-0.3, r.y) * (1.0 - step(0.2, r.y));
		}
		pixel = fixed3(ret, ret, ret);
		return fixed4(pixel, 1.0);

	}


		ENDCG
	}
	}
}
得到的效果图如图所示:
2、Clamp:在Unity中的代码如下:
Shader "Unlit/Chapter5-Clamp"
{
	Properties
	{
		_background("背景色",Color) = (0,0,0,0)
	}
		SubShader
	{
		// No culling or depth
		Cull Off ZWrite Off ZTest Always

		// 追加
		CGINCLUDE
		//定义宏
		#define PI 3.14159
		ENDCG


	Pass
	{
		CGPROGRAM
		#pragma vertex vert
		#pragma fragment frag

		#include "UnityCG.cginc"

		float4 _background;

	struct appdata
	{
		float4 vertex : POSITION;
		float2 uv : TEXCOORD0;
	};

	struct v2f
	{
		float2 uv : TEXCOORD0;
		float4 vertex : SV_POSITION;
	};

	v2f vert(appdata v)
	{
		v2f o;
		o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
		o.uv = v.uv;
		o.uv.y = 1 - o.uv.y;
		return o;
	}

	// Functions
	fixed4 frag(v2f i) : SV_Target
	{
		float2 r = 2.0*(i.uv - 0.5);
		//_ScreenParams是Unity内置的变量
		float aspectRatio = _ScreenParams.x / _ScreenParams.y;
		r.x *= aspectRatio;

		fixed3 pixel = _background.xyz;
		float edge, variable, ret;

		//第一部分
		if (i.uv.x < 0.25) { // part1
			ret = i.uv.y;
		}
		else if (i.uv.x < 0.5) { // part2
			float minVal = 0.3;
			float maxVal = 0.6;
			variable = i.uv.y;
			if (variable < minVal) {
				ret = minVal;
			}
			if (variable > minVal && variable < maxVal) {
				ret = variable;
			}
			if (variable > maxVal) {
				ret = maxVal;
			}
		}
		else if (i.uv.x < 0.75) { // part3
			float minVal = 0.6;
			float maxVal = 0.8;
			variable = i.uv.y;
			//clam(x,a,b):x如果小于a返回a,如果大于b返回b,在a~b范围内返回x
			ret = clamp(variable, minVal, maxVal);
		}
		else { // part4
			float y = cos(5.0 * 2.0 * PI *i.uv.y);
			y = (y + 1.0)*0.5; // map [-1,1] to [0,1]
			ret = clamp(y, 0.2, 0.8);
		}

		pixel = fixed3(ret, ret, ret);
		return fixed4(pixel, 1.0);

	}


		ENDCG
	}
	}
}
效果图如图所示:

说明:对比1和2的图会明显发现,在使用Clamp处理的时候,边缘的颜色会有渐变的效果。
3、smoothstep:这个脚本只给出片段着色器部分,其他部分同2,代码如下:
fixed4 frag(v2f i) : SV_Target
	{

		fixed3 pixel = _background.xyz;

		float edge, variable, ret;

		if (i.uv.x < 1.0 / 5.0) { // part1
			edge = 0.5;
			ret = step(edge, i.uv.y);
		}
		else if (i.uv.x < 2.0 / 5.0) { // part2
			float edge0 = 0.45;
			float edge1 = 0.55;
			float t = (i.uv.y - edge0) / (edge1 - edge0);
			float t1 = clamp(t, 0.0, 1.0);
			ret = t1;
		}
		else if (i.uv.x < 3.0 / 5.0) { // part3
			float edge0 = 0.45;
			float edge1 = 0.55;
			float t = clamp((i.uv.y - edge0) / (edge1 - edge0), 0.0, 1.0);
			float t1 = 3.0*t*t - 2.0*t*t*t;
			ret = t1;
		}
		else if (i.uv.x < 4.0 / 5.0) { // part4

			//smoothstep(min,max,x):x=-2*((x-min)/(max-min))^3+3*((x-min)/(max-min))^2,当x=min时返回0,当x=max时返回1
			ret = smoothstep(0.45, 0.55, i.uv.y);
		}
		else if (i.uv.x < 5.0 / 5.0) {
			float edge0 = 0.45;
			float edge1 = 0.55;
			float t = clamp((i.uv.y - edge0) / (edge1 - edge0), 0.0, 1.0);
			float t1 = t*t*t*(t*(t*6.0 - 15.0) + 10.0);
			ret = t1;
		}


		pixel = fixed3(ret, ret, ret);
		return fixed4(pixel, 1.0);
	}

得到的效果图如上图所示,这个效果要对比之前的两个,可以发现有明显的过渡效果。当然不是说这个函数就比之前的函数好用,各有千秋,只是在本篇文章中特有的安排而已。
4、lerp函数,Unity中的Shader代码如下:
Shader "Unlit/Chapter5-Lerp"
{
	Properties
	{
		_background("背景色",Color) = (0,0,0,0)
		_col1("颜色1",Color)=(0,0,0,0)
		_col2("颜色2",Color)=(0,0,0,0)
	}
	SubShader
	{
		// No culling or depth
		Cull Off ZWrite Off ZTest Always

		CGINCLUDE
		//定义宏
		#define PI 3.14159
		ENDCG


	Pass
	{
		CGPROGRAM
		#pragma vertex vert
		#pragma fragment frag

		#include "UnityCG.cginc"

		float4 _background;
		float4 _col1;
		float4 _col2;

	struct appdata
	{
		float4 vertex : POSITION;
		float2 uv : TEXCOORD0;
	};

	struct v2f
	{
		float2 uv : TEXCOORD0;
		float4 vertex : SV_POSITION;
	};

	v2f vert(appdata v)
	{
		v2f o;
		o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
		o.uv = v.uv;
		o.uv.y = 1 - o.uv.y;
		return o;
	}
	// Functions
	fixed4 frag(v2f i) : SV_Target
	{

		fixed3 pixel = _background.xyz;

		fixed3 ret;

		if (i.uv.x < 1.0 / 5.0) { // part1
			float x0 = 0.2;
			float x1 = 0.7;
			float m = 0.1;
			float val = x0 * (1.0 - m) + x1*m;
			ret = fixed3(val, val, val);
		}
		else if (i.uv.x < 2.0 / 5.0) { // part2
			float x0 = 0.2;
			float x1 = 0.7;
			float m = i.uv.y;
			float val = x0*(1.0 - m) + x1*m;
			ret = fixed3(val, val, val);
		}
		else if (i.uv.x < 3.0 / 5.0) { // part3
			float x0 = 0.2;
			float x1 = 0.7;
			float m = i.uv.y;
			//lerp(a,b,f)返回(1-f)*a+b*f
			float val = lerp(x0, x1, m);
			ret = fixed3(val, val, val);

		}
		else if (i.uv.x < 4.0 / 5.0) { // part4
			float m = i.uv.y;
			ret = lerp(_col1, _col2, m);
		}
		else if (i.uv.x < 5.0 / 5.0) {
			float m = smoothstep(0.5, 0.6, i.uv.y);
			ret = lerp(_col1, _col2, m);
		}
		pixel = ret;
		return fixed4(pixel, 1.0);
	}


	ENDCG
		}
	}
}
效果图如图所示:
这个Shader中对lerp函数和smoothstep函数做了对比,其中第三个区域是使用lerp函数的效果,第四个区域是先进行了smoothstep处理在进行lerp处理的效果。
5、lerp函数与直接的颜色加减进行对比:完整的Shader代码如下:
Shader "Unlit/Chapter5-ColorAdd&Substr"
{
	Properties
	{
		
	}
	SubShader
	{
		// No culling or depth
		Cull Off ZWrite Off ZTest Always

		// 追加
		CGINCLUDE
		// 添加画圆盘的方法
		float disk(float2 r, float2 center, float radius) {
		float distanceFromCenter = length(r - center);
		float outsideOfDisk = smoothstep(radius - 0.005, radius + 0.005, distanceFromCenter);
		float insideOfDisk = 1.0 - outsideOfDisk;
		return insideOfDisk;

		}
		ENDCG


	Pass
	{
		CGPROGRAM
		#pragma vertex vert
		#pragma fragment frag

		#include "UnityCG.cginc"

	struct appdata
	{
		float4 vertex : POSITION;
		float2 uv : TEXCOORD0;
	};

	struct v2f
	{
		float2 uv : TEXCOORD0;
		float4 vertex : SV_POSITION;
	};

	v2f vert(appdata v)
	{
		v2f o;
		o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
		o.uv = v.uv;
		o.uv.y = 1 - o.uv.y;
		return o;
	}

	// ANTI-ALIASING WITH SMOOTHSTEP
	fixed4 frag(v2f i) : SV_Target
	{
		float2 r = 2.0 * (i.uv - 0.5);
		float aspectRatio = _ScreenParams.x / _ScreenParams.y;
		r.x *= aspectRatio;

		fixed3 black = float3(0.0, 0.0, 0.0); // black
		fixed3 white = float3(1.0, 1.0, 1.0);
		fixed3 gray = float3(0.3, 0.3, 0.3);
		fixed3 col1 = float3(0.216, 0.471, 0.698); // blue
		fixed3 col2 = float3(1.00, 0.329, 0.298); // red
		fixed3 col3 = float3(0.867, 0.910, 0.247); // yellow

		fixed3 ret;
		fixed3 pixel;
		float d;


		//三个部分的画法各有优势

		//第一部分背景是灰色,简单的覆盖叠加
		if (i.uv.x < 1.0 / 3.0) { // part1
			ret = gray;
			d = disk(r, float2(-1.1, 0.3), 0.4);
			ret = lerp(ret, col1, d);
			d = disk(r, float2(-1.3, 0.0), 0.4);
			ret = lerp(ret, col2, d);
			d = disk(r, float2(-1.05, -0.3), 0.4);
			ret = lerp(ret, col3, d);
		}

		//第二部分背景是黑色,通过颜色相加来实现
		else if (i.uv.x < 2.0 / 3.0) { // part2
									   // Color addition
			ret = black;
			ret += disk(r, float2(0.1, 0.3), 0.4) * col1;
			ret += disk(r, float2(-0.1, 0.0), 0.4) * col2;
			ret += disk(r, float2(0.15, -0.3), 0.4) * col3;
		}

		//第三部分背景是白色,通过相减来实现颜色的显示
		else if (i.uv.x < 3.0 / 3.0) { // part3
									   // Color substraction
			ret = white;
			ret -= disk(r, float2(1.1, 0.3), 0.4) * col1;
			ret -= disk(r, float2(1.05, 0.0), 0.4) * col2;
			ret -= disk(r, float2(1.35, -0.25), 0.4) * col3;

		}
		pixel = ret;
		return fixed4(pixel, 1.0);
	}


		ENDCG
	}
	}
}
得到的效果图如图所示:第一部分通过lerp函数来处理颜色重叠的部分,第二、三部分之间通过颜色的加减来处理颜色重叠的部分。

6、三角函数,sin、cos函数:利用正弦余弦函数来做图形的旋转,效果图如图所示:

蓝色的网格和蓝色的矩形、圆盘都是固定的,旋转的是红色的网格以及网格上的矩阵和圆盘,它的shader代码如下:
Shader "Unlit/Chapter6-Rotation"
{
	Properties
	{
		_RotateAngle("旋转的角度",Range(0,360))=36
	}
	SubShader
	{
		// No culling or depth
		Cull Off ZWrite Off ZTest Always

		// 
		CGINCLUDE

		#define PI 3.14159

		// 使用函数来创建网格,返回的值再乘以颜色及得到网格图形
		float coordinateGrid(float2 r) 
		{
			float3 axisCol = float3(0.0, 0.0, 1.0);
			float3 gridCol = float3(0.5, 0.5, 0.5);
			float ret = 0.0;

			// 画线
			const float tickWidth = 0.1;
			for (float i = -2.0; i<2.0; i += tickWidth) {
				ret += 1.0 - smoothstep(0.0, 0.008, abs(r.x - i));
				ret += 1.0 - smoothstep(0.0, 0.008, abs(r.y - i));
			}

			// 画坐标轴
			ret += 1.0 - smoothstep(0.001, 0.015, abs(r.x));
			ret += 1.0 - smoothstep(0.001, 0.015, abs(r.y));
			return ret;
		}

	// 在圆盘里面的都返回1
	float disk(float2 r, float2 center, float radius) {
		return 1.0 - smoothstep(radius - 0.005, radius + 0.005, length(r - center));
	}

	// 在长方形里面的都返回1
	float rectangle(float2 r, float2 bottomLeft, float2 topRight) {
		float ret;
		float d = 0.005;
		ret = smoothstep(bottomLeft.x - d, bottomLeft.x + d, r.x);
		ret *= smoothstep(bottomLeft.y - d, bottomLeft.y + d, r.y);
		ret *= 1.0 - smoothstep(topRight.y - d, topRight.y + d, r.y);
		ret *= 1.0 - smoothstep(topRight.x - d, topRight.x + d, r.x);
		return ret;
	}
	ENDCG


	Pass
	{
		CGPROGRAM
		#pragma vertex vert
		#pragma fragment frag

		#include "UnityCG.cginc"

		uniform float _RotateAngle;

		struct appdata
		{
			float4 vertex : POSITION;
			float2 uv : TEXCOORD0;
		};

		struct v2f
		{
			float2 uv : TEXCOORD0;
			float4 vertex : SV_POSITION;
		};

		v2f vert(appdata v)
		{
			v2f o;
			o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
			o.uv = v.uv;
			o.uv.y = 1 - o.uv.y;
			return o;
		}

		//坐标变换:旋转
		fixed4 frag(v2f i) : SV_Target
		{
			float2 r = 2.0 * (i.uv - 0.5);
			float aspectRatio = _ScreenParams.x / _ScreenParams.y;
			r.x *= aspectRatio;

			fixed3 bgCol = float3(1.0, 1.0, 1.0); // white

			fixed3 col1 = float3(0.216, 0.471, 0.698); // blue
			fixed3 col2 = float3(1.00, 0.329, 0.298); // red
			fixed3 col3 = float3(0.867, 0.910, 0.247); // yellow

			fixed3 ret;
			float2 q;
			float angle;
			//angle = 0.2*PI; // 旋转36度
			angle = _RotateAngle / PI;
			q.x = cos(angle)*r.x + sin(angle)*r.y;
			q.y = -sin(angle)*r.x + cos(angle)*r.y;

			ret = bgCol;
			// 画出这两个坐标系

			//底色浅一点为固定轴
			ret = lerp(ret, col1, coordinateGrid(r)*0.4);

			//要旋转的坐标轴
			ret = lerp(ret, col2, coordinateGrid(q));

			// 画出各种图形

			//在固定坐标系的图形
			ret = lerp(ret, col1, disk(r, float2(1.0, 0.0), 0.2));
			ret = lerp(ret, col1, rectangle(r, float2(-0.8, 0.2), float2(-0.5, 0.4)));

			//在可旋转坐标系的图形
			ret = lerp(ret, col2, disk(q, float2(1.0, 0.0), 0.2));			
			ret = lerp(ret, col2, rectangle(q, float2(-0.8, 0.2),float2(-0.5, 0.4)));

			fixed3 pixel = ret;
			return fixed4(pixel, 1.0);
		}


		ENDCG
		}
	}
}
7、使用lerp函数来进行缩放,效果图所示:同样,蓝色部分是固定的,红色部分是缩放的的对象。

缩放的Shader的代码如下:
Shader "Unlit/Chapter6-Scale"
{
	Properties
	{
		_ScaleValue("缩放因子",Range(0.1,10))=1
	}
		SubShader
	{
		// No culling or depth
		Cull Off ZWrite Off ZTest Always

		CGINCLUDE

		#define PI 3.14159

		// 使用函数来创建网格,返回的值再乘以颜色及得到网格图形
		float coordinateGrid(float2 r) {
		float3 axisCol = float3(0.0, 0.0, 1.0);
		float3 gridCol = float3(0.5, 0.5, 0.5);
		float ret = 0.0;

		// 画网格
		const float tickWidth = 0.1;
		for (float i = -2.0; i<2.0; i += tickWidth) {
			ret += 1.0 - smoothstep(0.0, 0.008, abs(r.x - i));
			ret += 1.0 - smoothstep(0.0, 0.008, abs(r.y - i));
		}

		// 画坐标轴
		ret += 1.0 - smoothstep(0.001, 0.015, abs(r.x));
		ret += 1.0 - smoothstep(0.001, 0.015, abs(r.y));
		return ret;
		}

		// 在圆盘内的返回1
		float disk(float2 r, float2 center, float radius) {
			return 1.0 - smoothstep(radius - 0.005, radius + 0.005, length(r - center));
		}

		// 在长方形内的返回1
		float rectangle(float2 r, float2 bottomLeft, float2 topRight) {
			float ret;
			float d = 0.005;
			ret = smoothstep(bottomLeft.x - d, bottomLeft.x + d, r.x);
			ret *= smoothstep(bottomLeft.y - d, bottomLeft.y + d, r.y);
			ret *= 1.0 - smoothstep(topRight.y - d, topRight.y + d, r.y);
			ret *= 1.0 - smoothstep(topRight.x - d, topRight.x + d, r.x);
			return ret;
		}
		ENDCG


		Pass
		{
			CGPROGRAM
			#pragma vertex vert
			#pragma fragment frag

			#include "UnityCG.cginc"

			uniform float _ScaleValue;

			struct appdata
			{
				float4 vertex : POSITION;
				float2 uv : TEXCOORD0;
			};

			struct v2f
			{
				float2 uv : TEXCOORD0;
				float4 vertex : SV_POSITION;
			};

			v2f vert(appdata v)
			{
				v2f o;
				o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
				o.uv = v.uv;
				o.uv.y = 1 - o.uv.y;
				return o;
			}

		//坐标转换:缩放
		fixed4 frag(v2f i) : SV_Target
		{
			float2 r = 2.0 * (i.uv - 0.5);
			float aspectRatio = _ScreenParams.x / _ScreenParams.y;
			r.x *= aspectRatio;

			fixed3 bgCol = float3(1.0, 1.0, 1.0); // white

			fixed3 col1 = float3(0.216, 0.471, 0.698); // blue
			fixed3 col2 = float3(1.00, 0.329, 0.298); // red
			fixed3 col3 = float3(0.867, 0.910, 0.247); // yellow

			fixed3 ret;
			ret = bgCol;

			// 固定的坐标系
			ret = lerp(ret, col1, coordinateGrid(r) / 2.0);

			// 缩放
			float2 q = _ScaleValue*r;
			ret = lerp(ret, col2, coordinateGrid(q));

			// 画各个图形

			//在原始坐标系中画
			ret = lerp(ret, col1, disk(r, float2(0.0, 0.0), 0.1));
			ret = lerp(ret, col1, rectangle(r, float2(-0.5, 0.0),float2(-0.2, 0.2)));

			//在可缩放坐标系中画
			ret = lerp(ret, col2, disk(q, float2(0.0, 0.0), 0.1)); //大
			ret = lerp(ret, col2, rectangle(q, float2(-0.5, 0.0),float2(-0.2, 0.2))); //大



			fixed3 pixel = ret;
			return fixed4(pixel, 1.0);
		}


		ENDCG
	}
	}
}
8、平移以及旋转和平移的组合,效果如图所示,这个Shader部分分了两个部分对旋转和平移进行组合使用,分别是

先旋转在平移和先平移再旋转,Shader的代码如下:
Shader "Unlit/Chapter6-Transform"
{
	Properties
	{
		_RotationAngle("旋转角",Range(0,360))=0
		_LRotatedTranslatedX("左半部分X方向平移",Range(0,1))=0
		_LRotatedTranslatedY("左半部分Y方向平移",Range(0,1))=0

		_RRotatedTranslatedX("右半部分X方向平移",Range(0,1)) = 0
		_RRotatedTranslatedY("右半部分Y方向平移",Range(0,1)) = 0
	}
	SubShader
	{
		// No culling or depth
		Cull Off ZWrite Off ZTest Always
		CGINCLUDE
		#define PI 3.1415926

		// 通过函数来画网格
		float coordinateGrid(float2 r) {
		float3 axisCol = float3(0.0, 0.0, 1.0);
		float3 gridCol = float3(0.5, 0.5, 0.5);
		float ret = 0.0;

		// 画网线
		const float tickWidth = 0.1;
		for (float i = -2.0; i<2.0; i += tickWidth) {
			ret += 1.0 - smoothstep(0.0, 0.008, abs(r.x - i));
			ret += 1.0 - smoothstep(0.0, 0.008, abs(r.y - i));
		}

		// 画坐标轴
		ret += 1.0 - smoothstep(0.001, 0.015, abs(r.x));
		ret += 1.0 - smoothstep(0.001, 0.015, abs(r.y));
		return ret;
	}

		// 圆内的返回1
		float disk(float2 r, float2 center, float radius) {
			return 1.0 - smoothstep(radius - 0.005, radius + 0.005, length(r - center));
		}

		// 在长方形内返回1
		float rectangle(float2 r, float2 bottomLeft, float2 topRight) {
			float ret;
			float d = 0.005;
			ret = smoothstep(bottomLeft.x - d, bottomLeft.x + d, r.x);
			ret *= smoothstep(bottomLeft.y - d, bottomLeft.y + d, r.y);
			ret *= 1.0 - smoothstep(topRight.y - d, topRight.y + d, r.y);
			ret *= 1.0 - smoothstep(topRight.x - d, topRight.x + d, r.x);
			return ret;
		}
	ENDCG


	Pass
	{
		CGPROGRAM
		#pragma vertex vert
		#pragma fragment frag

		#include "UnityCG.cginc"

		uniform float _RotationAngle;
		uniform float _LRotatedTranslatedX;
		uniform float _LRotatedTranslatedY;
		uniform float _RRotatedTranslatedX;
		uniform float _RRotatedTranslatedY;


		struct appdata
		{
			float4 vertex : POSITION;
			float2 uv : TEXCOORD0;
		};

		struct v2f
		{
			float2 uv : TEXCOORD0;
			float4 vertex : SV_POSITION;
		};

		v2f vert(appdata v)
		{
			v2f o;
			o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
			o.uv = v.uv;
			o.uv.y = 1 - o.uv.y;
			return o;
		}

		//坐标旋转和平移
		fixed4 frag(v2f i) : SV_Target
		{
			float2 r = 2.0 * (i.uv - 0.5);
			float aspectRatio = _ScreenParams.x / _ScreenParams.y;
			r.x *= aspectRatio;

			fixed3 bgCol = float3(1.0, 1.0, 1.0); // white

			fixed3 col1 = float3(0.216, 0.471, 0.698); // blue
			fixed3 col2 = float3(1.00, 0.329, 0.298); // red
			fixed3 col3 = float3(0.867, 0.910, 0.247); // yellow

			fixed3 ret;
			ret = bgCol;

			float angle = _RotationAngle/PI;
			float2x2 rotationMatrix = float2x2(cos(angle), -sin(angle),
				sin(angle), cos(angle));

			//分两部分进行转换

			//左半部分
			if (i.uv.x < 1.0 / 2.0) 
			{
				r = r - float2(-aspectRatio / 2.0, 0);
				float2 rotated = mul(rotationMatrix, r);
				float2 rotatedTranslated = rotated - float2(_LRotatedTranslatedX, _LRotatedTranslatedY);

				//原始坐标
				ret = lerp(ret, col1, coordinateGrid(r) * 0.3);
				//旋转坐标
				ret = lerp(ret, col2, coordinateGrid(rotated)*0.3);
				//旋转再平移
				ret = lerp(ret, col3, coordinateGrid(rotatedTranslated)*0.3);

				//原始坐标的图形
				ret = lerp(ret, col1, rectangle(r, float2(-0.1, -0.2), float2(0.1, 0.2)));
				//旋转之后的坐标图形
				ret = lerp(ret, col2, rectangle(rotated, float2(-0.1, -0.2), float2(0.1, 0.2)));
				//旋转再平移之后
				ret = lerp(ret, col3, rectangle(rotatedTranslated, float2(-0.1, -0.2), float2(0.1, 0.2)));
			}

			//右半部分
			else if (i.uv.x < 2.0 / 2.0) { 

				r = r - float2(aspectRatio / 2.0, 0);
				//平移
				float2 translated = r - float2(_RRotatedTranslatedX, _RRotatedTranslatedY);
				//平移再旋转
				float2 translatedRotated = mul(rotationMatrix, translated);

				//原始坐标
				ret = lerp(ret, col1, coordinateGrid(r) * 0.3);
				//平移
				ret = lerp(ret, col2, coordinateGrid(translated)*0.3);
				//平移之后再旋转
				ret = lerp(ret, col3, coordinateGrid(translatedRotated)*0.3);

				ret = lerp(ret, col1, rectangle(r, float2(-0.1, -0.2), float2(0.1, 0.2)));
				ret = lerp(ret, col2, rectangle(translated, float2(-0.1, -0.2), float2(0.1, 0.2)));
				ret = lerp(ret, col3, rectangle(translatedRotated, float2(-0.1, -0.2), float2(0.1, 0.2)));
			}




			fixed3 pixel = ret;
			return fixed4(pixel, 1.0);
		}


		ENDCG
	}
	}
}

三、放两个大招—各种动画效果

1、效果如图所示:从左到右分别是五个不同的动画效果,使用到的函数都是前面讲解的函数加上之后补充的旋转、缩放和平移效果。


Shader代码如下:(原文地址凯尔八阿哥专栏,转载请注明出处)
Shader "Unlit/Chapter6-Animations"
{
	Properties
	{
		_SpeedY("第一部分的速度",Range(0,3)) = 1
		_Amplitude("第二部分的振幅",Range(0,1)) = 0.8
		_RSpeedX("圆周运动X方向的速度",Range(0,10)) = 5
		_RSpeedY("圆周运动Y方向的速度",Range(0,10)) = 5
		_RAmplitudeY("圆周运动Y方向的幅度",Range(0,1)) = 0.1
		_RAmplitudeX("圆周运动X方向的幅度",Range(0,1)) = 0.1
		_ChainAnimSpeed("链条运动的速度",Range(0,10)) = 5
		_ChainAnimRotaSpeed("链条运动的旋转速度",Range(0,10)) = 3
		_JumpSpeed("跳跃运动的速度",Range(0,10))=2

	}
	SubShader
	{
		// No culling or depth
		Cull Off ZWrite Off ZTest Always
		CGINCLUDE
		#define PI 3.1415926

		// 通过函数来画网格
		float coordinateGrid(float2 r) {
		float3 axisCol = float3(0.0, 0.0, 1.0);
		float3 gridCol = float3(0.5, 0.5, 0.5);
		float ret = 0.0;

		// 画网线
		const float tickWidth = 0.1;
		for (float i = -2.0; i<2.0; i += tickWidth) {
			ret += 1.0 - smoothstep(0.0, 0.008, abs(r.x - i));
			ret += 1.0 - smoothstep(0.0, 0.008, abs(r.y - i));
		}

		// 画坐标轴
		ret += 1.0 - smoothstep(0.001, 0.015, abs(r.x));
		ret += 1.0 - smoothstep(0.001, 0.015, abs(r.y));
		return ret;
	}

		// 圆内的返回1
		float disk(float2 r, float2 center, float radius) 
		{
			return 1.0 - smoothstep(radius - 0.005, radius + 0.005, length(r - center));
		}

	// 在长方形内返回1
		float rectangle(float2 r, float2 bottomLeft, float2 topRight) 
		{
			float ret;
			float d = 0.005;
			ret = smoothstep(bottomLeft.x - d, bottomLeft.x + d, r.x);
			ret *= smoothstep(bottomLeft.y - d, bottomLeft.y + d, r.y);
			ret *= 1.0 - smoothstep(topRight.y - d, topRight.y + d, r.y);
			ret *= 1.0 - smoothstep(topRight.x - d, topRight.x + d, r.x);
			return ret;
		}
		float mod(float  a, float  b) 
		{ 
			return a - b*floor(a / b); 
		}
	ENDCG


	Pass
	{
		CGPROGRAM
		#pragma vertex vert
		#pragma fragment frag

		#include "UnityCG.cginc"
		uniform float _Amplitude;
		uniform float _SpeedY;
		uniform float _RSpeedX;
		uniform float _RSpeedY;
		uniform float _RAmplitudeY;
		uniform float _RAmplitudeX;
		uniform float _ChainAnimSpeed;
		uniform float _ChainAnimRotaSpeed;
		uniform float _JumpSpeed;

		struct appdata
		{
			float4 vertex : POSITION;
			float2 uv : TEXCOORD0;
		};

		struct v2f
		{
			float2 uv : TEXCOORD0;
			float4 vertex : SV_POSITION;
		};

		v2f vert(appdata v)
		{
			v2f o;
			o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
			o.uv = v.uv;
			o.uv.y = 1 - o.uv.y;
			return o;
		}

	//动画,使用到了Unity内置的变量_Time 四维向量(t/20, t, t*2, t*3),_Time.y=t;
	fixed4 frag(v2f i) : SV_Target
	{
		float2 r = 2.0 * (i.uv - 0.5);
		float aspectRatio = _ScreenParams.x / _ScreenParams.y;
		r.x *= aspectRatio;

		fixed3 bgCol = float3(1.0, 1.0, 1.0); // white

		fixed3 col1 = float3(0.216, 0.471, 0.698); // blue
		fixed3 col2 = float3(1.00, 0.329, 0.298); // red
		fixed3 col3 = float3(0.867, 0.910, 0.247); // yellow

		fixed3 ret;
		ret = bgCol;

		

		//第一部分,循环向上运动
		if (i.uv.x < 1.0 / 5.0) 
		{
			float2 q = r + float2(aspectRatio*4.0 / 5.0, 0);

			ret = fixed3(0.3, 0.3, 0.3);
			//unity内置的时间向量
			float y = _SpeedY*_Time.y;

			//使得y在-1到1之间
			y = mod(y,2.0) - 1.0;
			ret = lerp(ret, col1, disk(q, float2(0.0, y), 0.1));
		}
		//第二部分,循环来回并缩放运动
		else if (i.uv.x < 2.0 / 5.0) 
		{
			float2 q = r + float2(aspectRatio*2.0 / 5.0, 0);
			ret = fixed3(0.4, 0.4, 0.4);
			//添加振幅
			float y = _Amplitude * sin(0.5*_Time.y* 2.0 * PI);
			float radius = 0.15 + 0.05 * sin(_Time.y * 8.0);
			ret = lerp(ret, col1, disk(q, float2(0.0, y), radius));
		}
		//第三部分,圆周运动并变换颜色
		else if (i.uv.x < 3.0 / 5.0) 
		{
			float2 q = r + float2(aspectRatio * 0 / 5.0, 0);
			ret = float3(0.5, 0.5, 0.5);

			float x = _RAmplitudeX*cos(_Time.y*_RSpeedX);
			float y = _RAmplitudeY*sin(_Time.y*_RSpeedY);
			float radius = 0.2 + 0.1*sin(_Time.y*2.0);
			fixed3 color = lerp(col1, col2, sin(_Time.y)*0.5 + 0.5);
			ret = lerp(ret, color, rectangle(q, float2(x - 0.1, y - 0.1), float2(x + 0.1, y + 0.1)));
		}
		//第四部分,链条运动
		else if (i.uv.x < 4.0 / 5.0) 
		{
			float2 q = r + float2(-aspectRatio*2.0 / 5.0, 0);
			ret = float3(0.4, 0.4, 0.4);

			for (float i = -1.0; i<1.0; i += 0.2)
			{
				float x = 0.2 * cos(_Time.y*_ChainAnimSpeed + i*PI);
				float y = i;

				float2 s = q - float2(x, y);
				float angle = _Time.y * _ChainAnimRotaSpeed + i;
				float2x2 rot = float2x2(cos(angle), -sin(angle),
					sin(angle),  cos(angle));
				s = mul(rot, s);
				ret = lerp(ret, col1, rectangle(s, float2(-0.06, -0.06), float2(0.06, 0.06)));
			}
		}
		//第五部分,跳跃运动
		else if (i.uv.x < 5.0 / 5.0) 
		{
			float2 q = r + float2(-aspectRatio*4.0 / 5.0, 0);
			ret = float3(0.3, 0.3, 0.3);

			float speed = _JumpSpeed;
			float t = _Time.y * speed;
			float stopEveryAngle = PI / 2.0;
			float stopRatio = 0.5;
			//floor(x):返回小于等于t的最大整数     frac(x):返回x的小数部分
			float t1 = (floor(t) + smoothstep(0.0, 1.0 - stopRatio, frac(t)))*stopEveryAngle;

			float x = -0.2*cos(t1);
			float y = 0.3 * sin(t1);
			float dx = 0.1 + 0.03 * sin(t*10.0);
			float dy = 0.1 + 0.03 * sin(t*10.0 + PI);
			ret = lerp(ret, col1, rectangle(q, float2(x - dx, y - dy), float2(x + dx, y + dy)));


		}


		fixed3 pixel = ret;
		return fixed4(pixel, 1.0);
	}


		ENDCG
	}
	}
}
代码中使用到了“_Time”变量,这个是Unity内置的四维向量,(t/20,t,t*2,t*3)因此“_Time.y=t”即获得系统的渲染的单位时间。
2、等离子流动效果,效果图如图所示:

Shader代码如下:
Shader "Unlit/Chapter6-Plasma"
{
	Properties
	{
		_WaveSpeed("波浪速度",Range(0,10))=8
		_ColorValue1("混合颜色1",Range(0,360))=180
		_ColorValue2("混合颜色2",Range(0,360)) = 180
	}
		SubShader
	{
		// No culling or depth
		Cull Off ZWrite Off ZTest Always
		CGINCLUDE
		#define PI 3.1415926
		ENDCG


	Pass
	{
		CGPROGRAM
		#pragma vertex vert
		#pragma fragment frag

		#include "UnityCG.cginc"
		uniform float _WaveSpeed;
		uniform float _ColorValue1;
		uniform float _ColorValue2;

		struct appdata
		{
			float4 vertex : POSITION;
			float2 uv : TEXCOORD0;
		};

		struct v2f
		{
			float2 uv : TEXCOORD0;
			float4 vertex : SV_POSITION;
		};

		v2f vert(appdata v)
		{
			v2f o;
			o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
			o.uv = v.uv;
			o.uv.y = 1 - o.uv.y;
			return o;
		}
			
		//等离子效果
		fixed4 frag(v2f i) : SV_Target
		{
			float2 r = 2.0 * (i.uv - 0.5);
			float aspectRatio = _ScreenParams.x / _ScreenParams.y;
			r.x *= aspectRatio;
			float t = _Time.y*_WaveSpeed;
			r = r*8.0;

			float v1 = sin(r.x + t);
			float v2 = sin(r.y + t);
			float v3 = sin(r.x + r.y + t);
			float v4 = sin(sqrt(r.x*r.x + r.y*r.y) + 1.7*t);
			float v = v1 + v2 + v3 + v4;
			fixed3 ret;

			//第一部分垂直波浪
			if (i.uv.x < 1.0 / 10.0) 
			{
				ret = float3(v1, v1, v1)
			}
			//第二部分水平波浪
			else if (i.uv.x < 2.0 / 10.0)
			{
				ret = float3(v2, v2, v2);
			}

			//第三部分对角线波浪
			else if (i.uv.x < 3.0 / 10.0) 
			{
				ret = float3(v3, v3, v3);
			}
			//第四部分圆环波浪
			else if (i.uv.x < 4.0 / 10.0) 
			{
				ret = float3(v4, v4, v4);
			}
			//第五部分所有波浪的综合
			else if (i.uv.x < 5.0 / 10.0) 
			{
				ret = float3(v, v, v);
			}
			//第六部分通过正、余弦函数添加周期性渐变
			else if (i.uv.x < 6.0 / 10.0)
			{
				ret = float3(sin(2.0 * v), sin(2.0 * v), sin(2.0 * v));
			}
			//第七部分混合各种颜色
			else if (i.uv.x < 10.0 / 10.0) 
			{
				ret = float3(sin(v), sin(v + _ColorValue1/PI), sin(v + _ColorValue2/PI));
			}

			ret = 0.5 + 0.5 * ret;

			fixed3 pixel = ret;
			return fixed4(pixel, 1.0);
		}
			ENDCG
		}
	}
}

四、总结

1、Cg函数虽简单,使用得当也是逼格暴涨,对于想学好Shader童鞋来讲,还是要多从Cg语言基础着手,通过实例练习,不仅可以巩固基础知识,而且也可以在做的过程中添加学习的信心和兴趣。
2、正弦、余弦函数配合时间变量的使用能做到非常不错的动画效果,最好的效果还是要从根本上来讲还是数学,当今世界是学好数学和英语走遍天下都不怕了。

猜你喜欢

转载自blog.csdn.net/zhangxiao13627093203/article/details/53163098