JMM 内存模型

多任务和高并发的内存交互

多任务和高并发是衡量一台计算机处理器的能力重要指标之一。一般衡量一个服务器性能的高低好坏,使用每秒事务处理数(Transactions Per Second,TPS)这个指标比较能说明问题,它代表着一秒内服务器平均能响应的请求数,而TPS值与程序的并发能力有着非常密切的关系。物理机的并发问题与虚拟机中的情况有很多相似之处,物理机对并发的处理方案对于虚拟机的实现也有相当大的参考意义。

由于计算机的存储设备与处理器的运算能力之间有几个数量级的差距,所以现代计算机系统都不得不加入一层读写速度尽可能接近处理器运算速度的高速缓存(cache)来作为内存与处理器之间的缓冲:将运算需要使用到的数据复制到缓存中,让运算能快速进行,当运算结束后再从缓存同步回内存之中,这样处理器就无需等待缓慢的内存读写了。

基于高速缓存的存储交互很好地解决了处理器与内存的速度矛盾,但是引入了一个新的问题:缓存一致性(Cache Coherence)。在多处理器系统中,每个处理器都有自己的高速缓存,而他们又共享同一主存,如下图所示:多个处理器运算任务都涉及同一块主存,需要一种协议可以保障数据的一致性,这类协议有MSI、MESI、MOSI及Dragon Protocol等。

物理机内存交互关系

除此之外,为了使得处理器内部的运算单元能尽可能被充分利用,处理器可能会对输入代码进行乱序执行(Out-Of-Order Execution)优化,处理器会在计算之后将对乱序执行的代码进行结果重组,保证结果准确性。与处理器的乱序执行优化类似,Java虚拟机的即时编译器中也有类似的指令重排序(Instruction Recorder)优化。

Java内存模型

内存模型可以理解为在特定的操作协议下,对特定的内存或者高速缓存进行读写访问的过程抽象,不同架构下的物理机拥有不一样的内存模型,Java虚拟机也有自己的内存模型,即Java内存模型(Java Memory Model, JMM)。在C/C++语言中直接使用物理硬件和操作系统内存模型,导致不同平台下并发访问出错。而JMM的出现,能够屏蔽掉各种硬件和操作系统的内存访问差异,实现平台一致性,是的Java程序能够“一次编写,到处运行”。

主内存和工作内存

Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样底层细节。此处的变量与Java编程时所说的变量不一样,指包括了实例字段、静态字段和构成数组对象的元素,但是不包括局部变量与方法参数,后者是线程私有的,不会被共享。

Java内存模型中规定了所有的变量都存储在主内存中,每条线程还有自己的工作内存(可以与前面讲的处理器的高速缓存类比),线程的工作内存中保存了该线程使用到的变量到主内存副本拷贝,线程对变量的所有操作(读取、赋值)都必须在工作内存中进行,而不能直接读写主内存中的变量。不同线程之间无法直接访问对方工作内存中的变量,线程间变量值的传递均需要在主内存来完成,线程、主内存和工作内存的交互关系如下图所示,和上图很类似。

虚拟机内存交互关系

注意:这里的主内存、工作内存与Java内存区域的Java堆、栈、方法区不是同一层次内存划分,这两者基本上没有关系。

内存交互操作

由上面的交互关系可知,关于主内存与工作内存之间的具体交互协议,即一个变量如何从主内存拷贝到工作内存、如何从工作内存同步到主内存之间的实现细节,Java内存模型定义了以下八种操作来完成:

  • lock(锁定):作用于主内存的变量,把一个变量标识为一条线程独占状态。
  • unlock(解锁):作用于主内存变量,把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
  • read(读取):作用于主内存变量,把一个变量值从主内存传输到线程的工作内存中,以便随后的load动作使用
  • load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
  • use(使用):作用于工作内存的变量,把工作内存中的一个变量值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时将会执行这个操作。
  • assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋值给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
  • store(存储):作用于工作内存的变量,把工作内存中的一个变量的值传送到主内存中,以便随后的write的操作。
  • write(写入):作用于主内存的变量,它把store操作从工作内存中一个变量的值传送到主内存的变量中。

如果要把一个变量从主内存中复制到工作内存,就需要按顺寻地执行read和load操作,如果把变量从工作内存中同步回主内存中,就要按顺序地执行store和write操作。Java内存模型只要求上述两个操作必须按顺序执行,而没有保证必须是连续执行。也就是read和load之间,store和write之间是可以插入其他指令的,如对主内存中的变量a、b进行访问时,可能的顺序是read a,read b,load b, load a。Java内存模型还规定了在执行上述八种基本操作时,必须满足如下规则:

  • 不允许read和load、store和write操作之一单独出现
  • 不允许一个线程丢弃它的最近assign的操作,即变量在工作内存中改变了之后必须同步到主内存中。
  • 不允许一个线程无原因地(没有发生过任何assign操作)把数据从工作内存同步回主内存中。
  • 一个新的变量只能在主内存中诞生,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量。即就是对一个变量实施use和store操作之前,必须先执行过了assign和load操作。
  • 一个变量在同一时刻只允许一条线程对其进行lock操作,lock和unlock必须成对出现
  • 如果对一个变量执行lock操作,将会清空工作内存中此变量的值,在执行引擎使用这个变量前需要重新执行load或assign操作初始化变量的值
  • 如果一个变量事先没有被lock操作锁定,则不允许对它执行unlock操作;也不允许去unlock一个被其他线程锁定的变量。
  • 对一个变量执行unlock操作之前,必须先把此变量同步到主内存中(执行store和write操作)。

这8种内存访问操作很繁琐,后文会使用一个等效判断原则,即先行发生(happens-before)原则来确定一个内存访问在并发环境下是否安全。

volatile变量规则

关键字volatile是JVM中最轻量的同步机制。volatile变量具有2种特性:

  • 保证变量的可见性。对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入,这个新值对于其他线程来说是立即可见的。
  • 屏蔽指令重排序:指令重排序是编译器和处理器为了高效对程序进行优化的手段,下文有详细的分析。

volatile语义并不能保证变量的原子性。对任意单个volatile变量的读/写具有原子性,但类似于i++、i–这种复合操作不具有原子性,因为自增运算包括读取i的值、i值增加1、重新赋值3步操作,并不具备原子性。

由于volatile只能保证变量的可见性和屏蔽指令重排序,只有满足下面2条规则时,才能使用volatile来保证并发安全,否则就需要加锁(使用synchronized、lock或者java.util.concurrent中的Atomic原子类)来保证并发中的原子性。

  • 运算结果不存在数据依赖(重排序的数据依赖性),或者只有单一的线程修改变量的值(重排序的as-if-serial语义)
  • 变量不需要与其他的状态变量共同参与不变约束

因为需要在本地代码中插入许多内存屏蔽指令在屏蔽特定条件下的重排序,volatile变量的写操作与读操作相比慢一些,但是其性能开销比锁低很多。

long/double非原子协定

JMM要求lock、unlock、read、load、assign、use、store、write这8个操作都必须具有原子性,但对于64为的数据类型(long和double,具有非原子协定:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为2次32位操作进行。(与此类似的是,在栈帧结构的局部变量表中,long和double类型的局部变量可以使用2个能存储32位变量的变量槽(Variable Slot)来存储的,关于这一部分的详细分析,详见详见周志明著《深入理解Java虚拟机》8.2.1节)

如果多个线程共享一个没有声明为volatile的long或double变量,并且同时读取和修改,某些线程可能会读取到一个既非原值,也不是其他线程修改值的代表了“半个变量”的数值。不过这种情况十分罕见。因为非原子协议换句话说,同样允许long和double的读写操作实现为原子操作,并且目前绝大多数的虚拟机都是这样做的。

原子性、可见性、有序性

原子性

JMM保证的原子性变量操作包括read、load、assign、use、store、write,而long、double非原子协定导致的非原子性操作基本可以忽略。如果需要对更大范围的代码实行原子性操作,则需要JMM提供的lock、unlock、synchronized等来保证。

可见性

前面分析volatile语义时已经提到,可见性是指当一个线程修改了共享变量的值,其他线程能够立即得知这个修改。JMM在变量修改后将新值同步回主内存,依赖主内存作为媒介,在变量被线程读取前从内存刷新变量新值,保证变量的可见性。普通变量和volatile变量都是如此,只不过volatile的特殊规则保证了这种可见性是立即得知的,而普通变量并不具备这种严格的可见性。除了volatile外,synchronized和final也能保证可见性。

有序性

JMM的有序性表现为:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句指“线程内表现为串行的语义”(as-if-serial),后半句值“指令重排序”和普通变量的”工作内存与主内存同步延迟“的现象。

重排序

在执行程序时为了提高性能,编译器和处理器经常会对指令进行重排序。从硬件架构上来说,指令重排序是指CPU采用了允许将多条指令不按照程序规定的顺序,分开发送给各个相应电路单元处理,而不是指令任意重排。重排序分成三种类型:

  • 编译器优化的重排序。编译器在不改变单线程程序语义放入前提下,可以重新安排语句的执行顺序。
  • 指令级并行的重排序。现代处理器采用了指令级并行技术来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。
  • 内存系统的重排序。由于处理器使用缓存和读写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。

重排序

JMM的重排序屏障

从Java源代码到最终实际执行的指令序列,会经过三种重排序。但是,为了保证内存的可见性,Java编译器在生成指令序列的适当位置会插入内存屏障指令来禁止特定类型的处理器重排序。对于编译器的重排序,JMM会根据重排序规则禁止特定类型的编译器重排序;对于处理器重排序,JMM会插入特定类型的内存屏障,通过内存的屏障指令禁止特定类型的处理器重排序。这里讨论JMM对处理器的重排序,为了更深理解JMM对处理器重排序的处理,先来认识一下常见处理器的重排序规则:

重排序屏障

其中的N标识处理器不允许两个操作进行重排序,Y表示允许。其中Load-Load表示读-读操作、Load-Store表示读-写操作、Store-Store表示写-写操作、Store-Load表示写-读操作。可以看出:常见处理器对写-读操作都是允许重排序的,并且常见的处理器都不允许对存在数据依赖的操作进行重排序(对应上面数据转换那一列,都是N,所以处理器不允许这种重排序)。

那么这个结论对我们有什么作用呢?比如第一点:处理器允许写-读操作两者之间的重排序,那么在并发编程中读线程读到可能是一个未被初始化或者是一个NULL等,出现不可预知的错误,基于这点,JMM会在适当的位置插入内存屏障指令来禁止特定类型的处理器的重排序。内存屏障指令一共有4类:

  • LoadLoad Barriers:确保Load1数据的装载先于Load2以及所有后续装载指令
  • StoreStore Barriers:确保Store1的数据对其他处理器可见(会使缓存行无效,并刷新到内存中)先于Store2及所有后续存储指令的装载
  • LoadStore Barriers:确保Load1数据装载先于Store2及所有后续存储指令刷新到内存
  • StoreLoad Barriers:确保Store1数据对其他处理器可见(刷新到内存,并且其他处理器的缓存行无效)先于Load2及所有后续装载指令的装载。该指令会使得该屏障之前的所有内存访问指令完成之后,才能执行该屏障之后的内存访问指令。

数据依赖性

根据上面的表格,处理器不会对存在数据依赖的操作进行重排序。这里数据依赖的准确定义是:如果两个操作同时访问一个变量,其中一个操作是写操作,此时这两个操作就构成了数据依赖。常见的具有这个特性的如i++、i—。如果改变了具有数据依赖的两个操作的执行顺序,那么最后的执行结果就会被改变。这也是不能进行重排序的原因。例如:

  • 写后读:a = 1; b = a;
  • 写后写:a = 1; a = 2;
  • 读后写:a = b; b = 1;

重排序遵守数据依赖性,编译器和处理器不会改变存在数据依赖关系的两个操作的执行顺序。但是这里所说的数据依赖性仅针对单个处理器中执行的指令序列和单个线程中执行的操作,不同处理器之间和不同线程之间的数据依赖性不被编译器和处理器考虑。

as-if-serial语义

as-if-serial语义的意思指:管怎么重排序(编译器和处理器为了提高并行度),(单线程)程序的执行结果不能被改变。编译器,runtime 和处理器都必须遵守as-if-serial语义。

as-if-serial语义把单线程程序保护了起来,遵守as-if-serial语义的编译器,runtime 和处理器共同为编写单线程程序的程序员创建了一个幻觉:单线程程序是按程序的顺序来执行的。as-if-serial语义使单线程程序员无需担心重排序会干扰他们,也无需担心内存可见性问题。

重排序对多线程的影响

如果代码中存在控制依赖的时候,会影响指令序列执行的并行度(因为高效)。也是为此,编译器和处理器会采用猜测(Speculation)执行来克服控制的相关性。所以重排序破坏了程序顺序规则(该规则是说指令执行顺序与实际代码的执行顺序是一致的,但是处理器和编译器会进行重排序,只要最后的结果不会改变,该重排序就是合理的)。

在单线程程序中,由于as-ifserial语义的存在,对存在控制依赖的操作重排序,不会改变执行结果;但在多线程程序中,对存在控制依赖的操作重排序,可能会改变程序的执行结果。

先行发生原则(happens-before)

前面所述的内存交互操作必须要满足一定的规则,而happens-before就是定义这些规则的一个等效判断原则。happens-before是JMM定义的2个操作之间的偏序关系:如果操作A线性发生于操作B,则A产生的影响能被操作B观察到,“影响”包括修改了内存中共享变量的值、发送了消息、调用了方法等。如果两个操作满足happens-before原则,那么不需要进行同步操作,JVM能够保证操作具有顺序性,此时不能够随意的重排序。否则,无法保证顺序性,就能进行指令的重排序。

happens-before原则主要包括:

  • 程序次序规则(Program Order Rule):在同一个线程中,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操纵。准确的说是程序的控制流顺序,考虑分支和循环等。
  • 管理锁定规则(Monitor Lock Rule):一个unlock操作先行发生于后面(时间上的顺序)对同一个锁的lock操作。
  • volatile变量规则(Volatile Variable Rule):对一个volatile变量的写操作先行发生于后面(时间上的顺序)对该变量的读操作。
  • 线程启动规则(Thread Start Rule):Thread对象的start()方法先行发生于此线程的每一个动作。
  • 线程终止规则(Thread Termination Rule):线程的所有操作都先行发生于对此线程的终止检测,可以通过Thread.join()方法结束、Thread.isAlive()的返回值等手段检测到线程已经终止执行。
  • 线程中断规则(Thread Interruption Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断时事件的发生。Thread.interrupted()可以检测是否有中断发生。
  • 对象终结规则(Finilizer Rule):一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()的开始。
  • 传递性(Transitivity):如果操作A 先行发生于操作B,操作B 先行发生于操作C,那么可以得出A 先行发生于操作C。

注意:不同操作时间先后顺序与先行发生原则之间没有关系,二者不能相互推断,衡量并发安全问题不能受到时间顺序的干扰,一切都要以happens-before原则为准

示例代码1:

private int value = 0;

public void setValue(int value) {
    this.value = value;
}

public int getValue() {
    return this.value;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

对于上面的代码,假设线程A在时间上先调用setValue(1),然后线程B调用getValue()方法,那么线程B收到的返回值一定是1吗?

按照happens-before原则,两个操作不在同一个线程、没有通道锁同步、线程的相关启动、终止和中断以及对象终结和传递性等规则都与此处没有关系,因此这两个操作是不符合happens-before原则的,这里的并发操作是不安全的,返回值并不一定是1。

对于该问题的修复,可以使用lock或者synchronized套用“管程锁定规则”实现先行发生关系;或者将value定义为volatile变量(两个方法的调用都不存在数据依赖性),套用“volatile变量规则”实现先行发生关系。如此一来,就能保证并发安全性。

示例代码2

// 以下操作在同一个线程中
int i = 1;
int j = 2;
  • 1
  • 2
  • 3

上面的代码符合“程序次序规则”,满足先行发生关系,但是第2条语句完全可能由于重排序而被处理器先执行,时间上先于第1条语句。

参考 
1、周志明,深入理解Java虚拟机:JVM高级特性与最佳实践,机械工业出版社 
2、AlphaWang博客,http://blog.csdn.net/vking_wang/article/details/8574376


Java内存模型的抽象

Java线程之间的通信由Java内存模型(本文简称为JMM)控制,JMM决定一个线程对共享变量的写入何时对另一个线程可见。

从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。本地内存是JMM的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化

1. 重排序

为了程序能够更高效的运行,编译器和处理器都会对指令进行重排序;重排序分为以下三种类型:

  1. 编译器优化的重排序
  2. 指令级并行的重排序
  3. 内存系统的重排序

只要是重排序都有可能会导致多线程内出现内存可见性的问题

1.1 内存屏障指令

为了保证内存可见性,java编译器在生成指令序列的适当位置会插入内存屏障指令来禁止特定类型的处理器重排序。JMM把内存屏障指令分为下列四类:

屏障类型 指令示例 说明
LoadLoad Barriers Load1; LoadLoad; Load2 确保Load1数据的装载,之前于Load2及所有后续装载指令的装载。
StoreStore Barriers Store1; StoreStore; Store2 确保Store1数据对其他处理器可见(刷新到内存),之前于Store2及所有后续存储指令的存储。
LoadStore Barriers Load1; LoadStore; Store2 确保Load1数据装载,之前于Store2及所有后续的存储指令刷新到内存。
StoreLoad Barriers Store1; StoreLoad; Load2 确保Store1数据对其他处理器变得可见(指刷新到内存),之前于Load2及所有后续装载指令的装载。StoreLoad Barriers会使该屏障之前的所有内存访问指令(存储和装载指令)完成之后,才执行该屏障之后的内存访问指令。

1.2 happens-before

如果一个操作执行的结果需要对另一个操作可见,那么这两个操作之间必须存在happens-before关系。这里提到的两个操作既可以是在一个线程之内,也可以是在不同线程之间。

happens-before规则如下:

  • 程序顺序规则:一个线程中的每个操作,happens- before 于该线程中的任意后续操作。
  • 监视器锁规则:对一个监视器锁的解锁,happens- before 于随后对这个监视器锁的加锁。
  • volatile变量规则:对一个volatile域的写,happens- before 于任意后续对这个volatile域的读。
  • 传递性:如果A happens- before B,且B happens- before C,那么A happens- before C。

注意,两个操作之间具有happens-before关系,并不意味着前一个操作必须要在后一个操作之前执行!happens-before仅仅要求前一个操作(执行的结果)对后一个操作可见,且前一个操作按顺序排在第二个操作之前

2. 顺序一致性模型

JMM对正确同步的多线程程序,其执行将具有顺序一致性(sequentially consistent)---即程序的执行结果和在顺序一致性模型中得到的结果相同;(这里同步是指广义上的同步,包括同步原语(lock,volatile,final)的正确使用)

特性:

  • 一个线程中所有操作都必须按照程序的顺序来执行
  • 不管程序是否同步,所有线程都只能看到一个单一的操作执行顺序。在此模型下,每个操作都必须原子执行且立即对所有线程可见

内存语义

JMM还定义了volatile、锁、final的内存语义,具体细节已经有同仁总结的很好了,所以这里就不多阐述了。

附上链接:

volatile的特性

当我们声明共享变量为volatile后,对这个变量的读/写将会很特别。理解volatile特性的一个好方法是:把对volatile变量的单个读/写,看成是使用同一个监视器锁对这些单个读/写操作做了同步。下面我们通过具体的示例来说明,请看下面的示例代码:

class VolatileFeaturesExample {
    volatile long vl = 0L;  //使用volatile声明64位的long型变量

    public void set(long l) {
        vl = l;   //单个volatile变量的写
    }

    public void getAndIncrement () {
        vl++;    //复合(多个)volatile变量的读/写
    }


    public long get() {
        return vl;   //单个volatile变量的读
    }
}

假设有多个线程分别调用上面程序的三个方法,这个程序在语意上和下面程序等价:

class VolatileFeaturesExample {
    long vl = 0L;               // 64位的long型普通变量

    public synchronized void set(long l) {     //对单个的普通 变量的写用同一个监视器同步
        vl = l;
    }

    public void getAndIncrement () { //普通方法调用
        long temp = get();           //调用已同步的读方法
        temp += 1L;                  //普通写操作
        set(temp);                   //调用已同步的写方法
    }
    public synchronized long get() { 
    //对单个的普通变量的读用同一个监视器同步
        return vl;
    }
}

如上面示例程序所示,对一个volatile变量的单个读/写操作,与对一个普通变量的读/写操作使用同一个监视器锁来同步,它们之间的执行效果相同。

监视器锁的happens-before规则保证释放监视器和获取监视器的两个线程之间的内存可见性,这意味着对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入。

监视器锁的语义决定了临界区代码的执行具有原子性。这意味着即使是64位的long型和double型变量,只要它是volatile变量,对该变量的读写就将具有原子性。如果是多个volatile操作或类似于volatile++这种复合操作,这些操作整体上不具有原子性。

简而言之,volatile变量自身具有下列特性:

  • 可见性。对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入。
  • 原子性:对任意单个volatile变量的读/写具有原子性,但类似于volatile++这种复合操作不具有原子性。

volatile写-读建立的happens before关系

上面讲的是volatile变量自身的特性,对程序员来说,volatile对线程的内存可见性的影响比volatile自身的特性更为重要,也更需要我们去关注。

从JSR-133开始,volatile变量的写-读可以实现线程之间的通信。

从内存语义的角度来说,volatile与监视器锁有相同的效果:volatile写和监视器的释放有相同的内存语义;volatile读与监视器的获取有相同的内存语义。

请看下面使用volatile变量的示例代码:

class VolatileExample {
    int a = 0;
    volatile boolean flag = false;

    public void writer() {
        a = 1;                   //1
        flag = true;               //2
    }

    public void reader() {
        if (flag) {                //3
            int i =  a;           //4
            ……
        }
    }
}

假设线程A执行writer()方法之后,线程B执行reader()方法。根据happens before规则,这个过程建立的happens before 关系可以分为两类:

  1. 根据程序次序规则,1 happens before 2; 3 happens before 4。
  2. 根据volatile规则,2 happens before 3。
  3. 根据happens before 的传递性规则,1 happens before 4。

上述happens before 关系的图形化表现形式如下:

在上图中,每一个箭头链接的两个节点,代表了一个happens before 关系。黑色箭头表示程序顺序规则;橙色箭头表示volatile规则;蓝色箭头表示组合这些规则后提供的happens before保证。

这里A线程写一个volatile变量后,B线程读同一个volatile变量。A线程在写volatile变量之前所有可见的共享变量,在B线程读同一个volatile变量后,将立即变得对B线程可见。

volatile写-读的内存语义

volatile写的内存语义如下:

  • 当写一个volatile变量时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存。

以上面示例程序VolatileExample为例,假设线程A首先执行writer()方法,随后线程B执行reader()方法,初始时两个线程的本地内存中的flag和a都是初始状态。下图是线程A执行volatile写后,共享变量的状态示意图:

如上图所示,线程A在写flag变量后,本地内存A中被线程A更新过的两个共享变量的值被刷新到主内存中。此时,本地内存A和主内存中的共享变量的值是一致的。

volatile读的内存语义如下:

  • 当读一个volatile变量时,JMM会把该线程对应的本地内存置为无效。线程接下来将从主内存中读取共享变量。

下面是线程B读同一个volatile变量后,共享变量的状态示意图:

如上图所示,在读flag变量后,本地内存B已经被置为无效。此时,线程B必须从主内存中读取共享变量。线程B的读取操作将导致本地内存B与主内存中的共享变量的值也变成一致的了。

如果我们把volatile写和volatile读这两个步骤综合起来看的话,在读线程B读一个volatile变量后,写线程A在写这个volatile变量之前所有可见的共享变量的值都将立即变得对读线程B可见。

下面对volatile写和volatile读的内存语义做个总结:

  • 线程A写一个volatile变量,实质上是线程A向接下来将要读这个volatile变量的某个线程发出了(其对共享变量所在修改的)消息。
  • 线程B读一个volatile变量,实质上是线程B接收了之前某个线程发出的(在写这个volatile变量之前对共享变量所做修改的)消息。
  • 线程A写一个volatile变量,随后线程B读这个volatile变量,这个过程实质上是线程A通过主内存向线程B发送消息。

volatile内存语义的实现

下面,让我们来看看JMM如何实现volatile写/读的内存语义。

前文我们提到过重排序分为编译器重排序和处理器重排序。为了实现volatile内存语义,JMM会分别限制这两种类型的重排序类型。下面是JMM针对编译器制定的volatile重排序规则表:

是否能重排序 第二个操作
第一个操作 普通读/写 volatile读 volatile写
普通读/写     NO
volatile读 NO NO NO
volatile写   NO NO

举例来说,第三行最后一个单元格的意思是:在程序顺序中,当第一个操作为普通变量的读或写时,如果第二个操作为volatile写,则编译器不能重排序这两个操作。

从上表我们可以看出:

  • 当第二个操作是volatile写时,不管第一个操作是什么,都不能重排序。这个规则确保volatile写之前的操作不会被编译器重排序到volatile写之后。
  • 当第一个操作是volatile读时,不管第二个操作是什么,都不能重排序。这个规则确保volatile读之后的操作不会被编译器重排序到volatile读之前。
  • 当第一个操作是volatile写,第二个操作是volatile读时,不能重排序。

为了实现volatile的内存语义,编译器在生成字节码时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。对于编译器来说,发现一个最优布置来最小化插入屏障的总数几乎不可能,为此,JMM采取保守策略。下面是基于保守策略的JMM内存屏障插入策略:

  • 在每个volatile写操作的前面插入一个StoreStore屏障。
  • 在每个volatile写操作的后面插入一个StoreLoad屏障。
  • 在每个volatile读操作的后面插入一个LoadLoad屏障。
  • 在每个volatile读操作的后面插入一个LoadStore屏障。

上述内存屏障插入策略非常保守,但它可以保证在任意处理器平台,任意的程序中都能得到正确的volatile内存语义。

下面是保守策略下,volatile写插入内存屏障后生成的指令序列示意图:

上图中的StoreStore屏障可以保证在volatile写之前,其前面的所有普通写操作已经对任意处理器可见了。这是因为StoreStore屏障将保障上面所有的普通写在volatile写之前刷新到主内存。

这里比较有意思的是volatile写后面的StoreLoad屏障。这个屏障的作用是避免volatile写与后面可能有的volatile读/写操作重排序。因为编译器常常无法准确判断在一个volatile写的后面,是否需要插入一个StoreLoad屏障(比如,一个volatile写之后方法立即return)。为了保证能正确实现volatile的内存语义,JMM在这里采取了保守策略:在每个volatile写的后面或在每个volatile读的前面插入一个StoreLoad屏障。从整体执行效率的角度考虑,JMM选择了在每个volatile写的后面插入一个StoreLoad屏障。因为volatile写-读内存语义的常见使用模式是:一个写线程写volatile变量,多个读线程读同一个volatile变量。当读线程的数量大大超过写线程时,选择在volatile写之后插入StoreLoad屏障将带来可观的执行效率的提升。从这里我们可以看到JMM在实现上的一个特点:首先确保正确性,然后再去追求执行效率。

下面是在保守策略下,volatile读插入内存屏障后生成的指令序列示意图:

上图中的LoadLoad屏障用来禁止处理器把上面的volatile读与下面的普通读重排序。LoadStore屏障用来禁止处理器把上面的volatile读与下面的普通写重排序。

上述volatile写和volatile读的内存屏障插入策略非常保守。在实际执行时,只要不改变volatile写-读的内存语义,编译器可以根据具体情况省略不必要的屏障。下面我们通过具体的示例代码来说明:

class VolatileBarrierExample {
    int a;
    volatile int v1 = 1;
    volatile int v2 = 2;

    void readAndWrite() {
        int i = v1;           //第一个volatile读
        int j = v2;           // 第二个volatile读
        a = i + j;            //普通写
        v1 = i + 1;          // 第一个volatile写
        v2 = j * 2;          //第二个 volatile写
    }

    …                    //其他方法
}

针对readAndWrite()方法,编译器在生成字节码时可以做如下的优化:

注意,最后的StoreLoad屏障不能省略。因为第二个volatile写之后,方法立即return。此时编译器可能无法准确断定后面是否会有volatile读或写,为了安全起见,编译器常常会在这里插入一个StoreLoad屏障。

上面的优化是针对任意处理器平台,由于不同的处理器有不同“松紧度”的处理器内存模型,内存屏障的插入还可以根据具体的处理器内存模型继续优化。以x86处理器为例,上图中除最后的StoreLoad屏障外,其它的屏障都会被省略。

前面保守策略下的volatile读和写,在 x86处理器平台可以优化成:

前文提到过,x86处理器仅会对写-读操作做重排序。X86不会对读-读,读-写和写-写操作做重排序,因此在x86处理器中会省略掉这三种操作类型对应的内存屏障。在x86中,JMM仅需在volatile写后面插入一个StoreLoad屏障即可正确实现volatile写-读的内存语义。这意味着在x86处理器中,volatile写的开销比volatile读的开销会大很多(因为执行StoreLoad屏障开销会比较大)。

JSR-133为什么要增强volatile的内存语义

在JSR-133之前的旧Java内存模型中,虽然不允许volatile变量之间重排序,但旧的Java内存模型允许volatile变量与普通变量之间重排序。在旧的内存模型中,VolatileExample示例程序可能被重排序成下列时序来执行:

在旧的内存模型中,当1和2之间没有数据依赖关系时,1和2之间就可能被重排序(3和4类似)。其结果就是:读线程B执行4时,不一定能看到写线程A在执行1时对共享变量的修改。

因此在旧的内存模型中 ,volatile的写-读没有监视器的释放-获所具有的内存语义。为了提供一种比监视器锁更轻量级的线程之间通信的机制,JSR-133专家组决定增强volatile的内存语义:严格限制编译器和处理器对volatile变量与普通变量的重排序,确保volatile的写-读和监视器的释放-获取一样,具有相同的内存语义。从编译器重排序规则和处理器内存屏障插入策略来看,只要volatile变量与普通变量之间的重排序可能会破坏volatile的内存语意,这种重排序就会被编译器重排序规则和处理器内存屏障插入策略禁止。

由于volatile仅仅保证对单个volatile变量的读/写具有原子性,而监视器锁的互斥执行的特性可以确保对整个临界区代码的执行具有原子性。在功能上,监视器锁比volatile更强大;在可伸缩性和执行性能上,volatile更有优势。如果读者想在程序中用volatile代替监视器锁,请一定谨慎。

参考文献

  1. Concurrent Programming in Java™: Design Principles and Pattern
  2. JSR 133 (Java Memory Model) FAQ
  3. JSR-133: Java Memory Model and Thread Specification
  4. The JSR-133 Cookbook for Compiler Writers
  5. Java 理论与实践: 正确使用 Volatile 变量
  6. Java theory and practice: Fixing the Java Memory Model, Part 2

关联文章:

深入理解Java类型信息(Class对象)与反射机制

深入理解Java枚举类型(enum)

深入理解Java注解类型(@Annotation)

深入理解Java类加载器(ClassLoader)

深入理解Java并发之synchronized实现原理

Java并发编程-无锁CAS与Unsafe类及其并发包Atomic

深入理解Java内存模型(JMM)及volatile关键字

剖析基于并发AQS的重入锁(ReetrantLock)及其Condition实现原理

剖析基于并发AQS的共享锁的实现(基于信号量Semaphore)

并发之阻塞队列LinkedBlockingQueue与ArrayBlockingQueue


猜你喜欢

转载自blog.csdn.net/zyc88888/article/details/80887264