(五十一)Android O Watchdog流程梳理

前言:之前在梳理SystemServer的时候有注意到Watchdog的初始化,很早之前也听说过看门狗,梳理一下。


参考:https://blog.csdn.net/fu_kevin0606/article/details/64479489


1. Watchdog简单介绍

“对手机系统而言,因为肩负着接听电话和接收短信的“重任”,所以被寄予7x24小 时正常工作的希望。但是作为一个在嵌入式设备上运行的操作系统,Android运行中必须面对各种软硬件干扰,从最简单的代码出现死锁或者被阻塞,到内存越界导致的内存破坏,或者由于硬件问题导致的内存反转,甚至是极端工作环境下出现的CPU电子迁移和存储器消磁。这一切问题都可能导致系统服务发生难以预料的崩溃和死机。
    想解决这一问题,可以从正反两个方向出发,其一是提高软硬件在极端状态下的可靠性,如进行程序终止性验证,或选用抗辐射加固器件。但是基于成本考虑,普通的手机系统很难做到完全不出故障;另一个方法是及时发现系统崩溃并重启系统。手机系统的大部分的故障都会在重启后消失,不会影响继续使用。所以简单的办法是,如果检测到系统不正常了,将设备重新启动,这样用户就能继续使用了。那么如何才能判断系统是否正常呢。在早期的手机平台上通常的做法是在设备中增加一个硬件看门狗,软件系统必须定 时的向看门狗硬件中写值来表示自己没出故障(俗称“喂狗”),否则超过了规定的时间看门狗就会重新启动设备。
    硬件看门狗的问题是它的功能比较单一,只能监控整个系统。早期的手机操作系统大多是单任务的,硬件看门狗勉强能胜任。Android的SystemServer是一个非常复杂的进程,里面运行的服务超过五十种,是最可能出问题的进程,因此有必要对SystemServer中运行的各种线程实施监控。但是如果使用硬件看门狗的工作方式,每个线程隔一段时间去喂狗,不但非常浪费CPU,而且会导致程序设计更加复杂。因此Android开发了WatchDog类作为软件看门狗来监控SystemServer中的线程。一旦发现问题,WatchDog会杀死SystemServer进程。

    SystemServer的父进程Zygote接收到SystemServer的死亡信号后,会杀死自己。Zygote进程死亡的信号传递到Init进程后,Init进程会杀死Zygote进程所有的子进程并重启Zygote。这样整个手机相当于重启一遍。通常SystemServer出现问题和kernel并没有关系,所以这种“软重启”大部分时候都能够解决问题。而且这种“软重启”的速度更快,对用户的影响也更小。”

盗一下图=-=


2.  流程梳理

Watchdog之前梳理SystemServer的时候有遇到,所以还是先从SystemServer开始吧。

2.1 SystemServer

Watchdog在SystemServer中主要完成了init和start的操作

    private void startOtherServices() {
            ...
            traceBeginAndSlog("InitWatchdog");
            final Watchdog watchdog = Watchdog.getInstance();
            watchdog.init(context, mActivityManagerService);
            traceEnd();
            ...
            traceBeginAndSlog("StartWatchdog");
            Watchdog.getInstance().start();
            traceEnd();


2.2 ActivityManagerService

其实在SystemServer完成init和start WatchDog之前AMS已经调用了WatchDog的addMonitor和addThread了,并且实现了Watchdog.Monitor接口。

原因:SystemServer先调用startBootstrapServices启动起ams,SystemServiceManager启动代码会对应的通过反射调用构造方法。

        mActivityManagerService = mSystemServiceManager.startService(
                ActivityManagerService.Lifecycle.class).getService();


AMS中与Watchdog相关代码:

public class ActivityManagerService extends IActivityManager.Stub
        implements Watchdog.Monitor, BatteryStatsImpl.BatteryCallback {
    /** In this method we try to acquire our lock to make sure that we have not deadlocked */
    public void monitor() {
        synchronized (this) { }
    }

这个monitor方法其实就是获取一下锁,然后快速释放,测试下有没有死锁。

// Note: This method is invoked on the main thread but may need to attach various
    // handlers to other threads.  So take care to be explicit about the looper.
    public ActivityManagerService(Context systemContext) {
...
        Watchdog.getInstance().addMonitor(this);
        Watchdog.getInstance().addThread(mHandler);
...
}


2.3 Watchdog

看下watchdog对应方法

AMS中调用的:

    public static Watchdog getInstance() {
        if (sWatchdog == null) {
            sWatchdog = new Watchdog();
        }

        return sWatchdog;
    }

getInstance方法表明了Watchdog是个单例模式,但是没有加synchronize=-=

    private Watchdog() {
        super("watchdog");
        // Initialize handler checkers for each common thread we want to check.  Note
        // that we are not currently checking the background thread, since it can
        // potentially hold longer running operations with no guarantees about the timeliness
        // of operations there.

        // The shared foreground thread is the main checker.  It is where we
        // will also dispatch monitor checks and do other work.
        mMonitorChecker = new HandlerChecker(FgThread.getHandler(),
                "foreground thread", DEFAULT_TIMEOUT);
        mHandlerCheckers.add(mMonitorChecker);
        // Add checker for main thread.  We only do a quick check since there
        // can be UI running on the thread.
        mHandlerCheckers.add(new HandlerChecker(new Handler(Looper.getMainLooper()),
                "main thread", DEFAULT_TIMEOUT));
        // Add checker for shared UI thread.
        mHandlerCheckers.add(new HandlerChecker(UiThread.getHandler(),
                "ui thread", DEFAULT_TIMEOUT));
        // And also check IO thread.
        mHandlerCheckers.add(new HandlerChecker(IoThread.getHandler(),
                "i/o thread", DEFAULT_TIMEOUT));
        // And the display thread.
        mHandlerCheckers.add(new HandlerChecker(DisplayThread.getHandler(),
                "display thread", DEFAULT_TIMEOUT));

        // Initialize monitor for Binder threads.
        addMonitor(new BinderThreadMonitor());

        mOpenFdMonitor = OpenFdMonitor.create();

        // See the notes on DEFAULT_TIMEOUT.
        assert DB ||
                DEFAULT_TIMEOUT > ZygoteConnectionConstants.WRAPPED_PID_TIMEOUT_MILLIS;
    }

这边HandlerCheckers添加成员:foreground thread/main thread/ui thread/io thread/display thread

    public void addMonitor(Monitor monitor) {
        synchronized (this) {
            if (isAlive()) {
                throw new RuntimeException("Monitors can't be added once the Watchdog is running");
            }
            mMonitorChecker.addMonitor(monitor);
        }
    }

    public void addThread(Handler thread) {
        addThread(thread, DEFAULT_TIMEOUT);
    }

    public void addThread(Handler thread, long timeoutMillis) {
        synchronized (this) {
            if (isAlive()) {
                throw new RuntimeException("Threads can't be added once the Watchdog is running");
            }
            final String name = thread.getLooper().getThread().getName();
            mHandlerCheckers.add(new HandlerChecker(thread, name, timeoutMillis));
        }
    }

addMonitor和addThread看起来就是简单的ArrayList拓展


SystemServer中调用的:

    public void init(Context context, ActivityManagerService activity) {
        mResolver = context.getContentResolver();
        mActivity = activity;

        context.registerReceiver(new RebootRequestReceiver(),
                new IntentFilter(Intent.ACTION_REBOOT),
                android.Manifest.permission.REBOOT, null);
    }

注册了个监听器

    final class RebootRequestReceiver extends BroadcastReceiver {
        @Override
        public void onReceive(Context c, Intent intent) {
            if (intent.getIntExtra("nowait", 0) != 0) {
                rebootSystem("Received ACTION_REBOOT broadcast");
                return;
            }
            Slog.w(TAG, "Unsupported ACTION_REBOOT broadcast: " + intent);
        }
    }

收到ACTON_REBOOT会重启

至于start方法,首先看下Watchdog是继承的Thread,所以Watchdog首先是一个线程,跑在SystemServer的线程。

那么start方法其实是调用的run方法

    @Override
    public void run() {
        boolean waitedHalf = false;
        while (true) {
            final List<HandlerChecker> blockedCheckers;
            final String subject;
            final boolean allowRestart;
            int debuggerWasConnected = 0;
            synchronized (this) {
                long timeout = CHECK_INTERVAL;
                // Make sure we (re)spin the checkers that have become idle within
                // this wait-and-check interval
                for (int i=0; i<mHandlerCheckers.size(); i++) {
                    HandlerChecker hc = mHandlerCheckers.get(i);
                    hc.scheduleCheckLocked();
                }

                if (debuggerWasConnected > 0) {
                    debuggerWasConnected--;
                }

                // NOTE: We use uptimeMillis() here because we do not want to increment the time we
                // wait while asleep. If the device is asleep then the thing that we are waiting
                // to timeout on is asleep as well and won't have a chance to run, causing a false
                // positive on when to kill things.
                long start = SystemClock.uptimeMillis();
                while (timeout > 0) {
                    if (Debug.isDebuggerConnected()) {
                        debuggerWasConnected = 2;
                    }
                    try {
                        wait(timeout);
                    } catch (InterruptedException e) {
                        Log.wtf(TAG, e);
                    }
                    if (Debug.isDebuggerConnected()) {
                        debuggerWasConnected = 2;
                    }
                    timeout = CHECK_INTERVAL - (SystemClock.uptimeMillis() - start);
                }

                boolean fdLimitTriggered = false;
                if (mOpenFdMonitor != null) {
                    fdLimitTriggered = mOpenFdMonitor.monitor();
                }

                if (!fdLimitTriggered) {
                    final int waitState = evaluateCheckerCompletionLocked();
                    if (waitState == COMPLETED) {
                        // The monitors have returned; reset
                        waitedHalf = false;
                        continue;
                    } else if (waitState == WAITING) {
                        // still waiting but within their configured intervals; back off and recheck
                        continue;
                    } else if (waitState == WAITED_HALF) {
                        if (!waitedHalf) {
                            // We've waited half the deadlock-detection interval.  Pull a stack
                            // trace and wait another half.
                            ArrayList<Integer> pids = new ArrayList<Integer>();
                            pids.add(Process.myPid());
                            ActivityManagerService.dumpStackTraces(true, pids, null, null,
                                getInterestingNativePids());
                            waitedHalf = true;
                        }
                        continue;
                    }

                    // something is overdue!
                    blockedCheckers = getBlockedCheckersLocked();
                    subject = describeCheckersLocked(blockedCheckers);
                } else {
                    blockedCheckers = Collections.emptyList();
                    subject = "Open FD high water mark reached";
                }
                allowRestart = mAllowRestart;
            }

            // If we got here, that means that the system is most likely hung.
            // First collect stack traces from all threads of the system process.
            // Then kill this process so that the system will restart.
            EventLog.writeEvent(EventLogTags.WATCHDOG, subject);

            ArrayList<Integer> pids = new ArrayList<>();
            pids.add(Process.myPid());
            if (mPhonePid > 0) pids.add(mPhonePid);
            // Pass !waitedHalf so that just in case we somehow wind up here without having
            // dumped the halfway stacks, we properly re-initialize the trace file.
            final File stack = ActivityManagerService.dumpStackTraces(
                    !waitedHalf, pids, null, null, getInterestingNativePids());

            // Give some extra time to make sure the stack traces get written.
            // The system's been hanging for a minute, another second or two won't hurt much.
            SystemClock.sleep(2000);

            // Pull our own kernel thread stacks as well if we're configured for that
            if (RECORD_KERNEL_THREADS) {
                dumpKernelStackTraces();
            }

            // Trigger the kernel to dump all blocked threads, and backtraces on all CPUs to the kernel log
            doSysRq('w');
            doSysRq('l');

            // Try to add the error to the dropbox, but assuming that the ActivityManager
            // itself may be deadlocked.  (which has happened, causing this statement to
            // deadlock and the watchdog as a whole to be ineffective)
            Thread dropboxThread = new Thread("watchdogWriteToDropbox") {
                    public void run() {
                        mActivity.addErrorToDropBox(
                                "watchdog", null, "system_server", null, null,
                                subject, null, stack, null);
                    }
                };
            dropboxThread.start();
            try {
                dropboxThread.join(2000);  // wait up to 2 seconds for it to return.
            } catch (InterruptedException ignored) {}

            IActivityController controller;
            synchronized (this) {
                controller = mController;
            }
            if (controller != null) {
                Slog.i(TAG, "Reporting stuck state to activity controller");
                try {
                    Binder.setDumpDisabled("Service dumps disabled due to hung system process.");
                    // 1 = keep waiting, -1 = kill system
                    int res = controller.systemNotResponding(subject);
                    if (res >= 0) {
                        Slog.i(TAG, "Activity controller requested to coninue to wait");
                        waitedHalf = false;
                        continue;
                    }
                } catch (RemoteException e) {
                }
            }

            // Only kill the process if the debugger is not attached.
            if (Debug.isDebuggerConnected()) {
                debuggerWasConnected = 2;
            }
            if (debuggerWasConnected >= 2) {
                Slog.w(TAG, "Debugger connected: Watchdog is *not* killing the system process");
            } else if (debuggerWasConnected > 0) {
                Slog.w(TAG, "Debugger was connected: Watchdog is *not* killing the system process");
            } else if (!allowRestart) {
                Slog.w(TAG, "Restart not allowed: Watchdog is *not* killing the system process");
            } else {
                Slog.w(TAG, "*** WATCHDOG KILLING SYSTEM PROCESS: " + subject);
                WatchdogDiagnostics.diagnoseCheckers(blockedCheckers);
                Slog.w(TAG, "*** GOODBYE!");
                Process.killProcess(Process.myPid());
                System.exit(10);
            }

            waitedHalf = false;
        }
    }

一长段代码,慢慢分析吧=-=

先看到while(ture)的无线循环,说明Watchdog是一直在跑着的,里面接着一个for循环:

                // Make sure we (re)spin the checkers that have become idle within
                // this wait-and-check interval
                for (int i=0; i<mHandlerCheckers.size(); i++) {
                    HandlerChecker hc = mHandlerCheckers.get(i);
                    hc.scheduleCheckLocked();
                }

之前应该注意到AMS在构造函数里传给Watchdog两个参数,monitor和handler,handler就是这边for循环取出来的。

看下内部类HandlerChecker,实现了Runnable

    public final class HandlerChecker implements Runnable {
...
scheduleCheckLocked方法就是将handler放在消息队列的开头
        public void scheduleCheckLocked() {
            if (mMonitors.size() == 0 && mHandler.getLooper().getQueue().isPolling()) {
                // If the target looper has recently been polling, then
                // there is no reason to enqueue our checker on it since that
                // is as good as it not being deadlocked.  This avoid having
                // to do a context switch to check the thread.  Note that we
                // only do this if mCheckReboot is false and we have no
                // monitors, since those would need to be executed at this point.
                mCompleted = true;
                return;
            }

            if (!mCompleted) {
                // we already have a check in flight, so no need
                return;
            }

            mCompleted = false;
            mCurrentMonitor = null;
            mStartTime = SystemClock.uptimeMillis();
            mHandler.postAtFrontOfQueue(this);
        }

之后调用

        @Override
        public void run() {
            final int size = mMonitors.size();
            for (int i = 0 ; i < size ; i++) {
                synchronized (Watchdog.this) {
                    mCurrentMonitor = mMonitors.get(i);
                }
                mCurrentMonitor.monitor();
            }

            synchronized (Watchdog.this) {
                mCompleted = true;
                mCurrentMonitor = null;
            }
        }

从我分析来看通过下面加入的HandlerChecker是没有addMonitor过的,说到底就是发个消息没有具体的逻辑,将mCompleted这个标志位置位false,但还是要处理的,表示监控的Service 的handler loop没有问题,处理完了会把mCompleted置为true,表示完成。

        Watchdog.getInstance().addThread(mHandler);

只有通过以下代码加入到mMonitorChecker是有monitor方法实现的,比如AMS实现了。

        Watchdog.getInstance().addMonitor(this);

mMonitorChecker其实一开始就加入到了mHandlerChecks里面了,相当于将monitor方法剥离出来。

                // NOTE: We use uptimeMillis() here because we do not want to increment the time we
                // wait while asleep. If the device is asleep then the thing that we are waiting
                // to timeout on is asleep as well and won't have a chance to run, causing a false
                // positive on when to kill things.
                long start = SystemClock.uptimeMillis();
                while (timeout > 0) {
                    if (Debug.isDebuggerConnected()) {
                        debuggerWasConnected = 2;
                    }
                    try {
                        wait(timeout);
                    } catch (InterruptedException e) {
                        Log.wtf(TAG, e);
                    }
                    if (Debug.isDebuggerConnected()) {
                        debuggerWasConnected = 2;
                    }
                    timeout = CHECK_INTERVAL - (SystemClock.uptimeMillis() - start);
                }

这块代码应该是计算timeout的,默认timeout是CHECK_INTERVAL是30s,这里注意使用了uptimeMillis()

    /**
     * Returns milliseconds since boot, not counting time spent in deep sleep.
     *
     * @return milliseconds of non-sleep uptime since boot.
     */
    @CriticalNative
    native public static long uptimeMillis();

这个时间是不算deep sleep的时间的,我理解为是监控的Service喂狗的真实时间,watchdog睡眠也许会大于30s的。

看下evaluateCheckerCompletionLocked方法,遍历所有的HandlerChecker,取state的最大值

    private int evaluateCheckerCompletionLocked() {
        int state = COMPLETED;
        for (int i=0; i<mHandlerCheckers.size(); i++) {
            HandlerChecker hc = mHandlerCheckers.get(i);
            state = Math.max(state, hc.getCompletionStateLocked());
        }
        return state;
    }
        public int getCompletionStateLocked() {
            if (mCompleted) {
                return COMPLETED;
            } else {
                long latency = SystemClock.uptimeMillis() - mStartTime;
                if (latency < mWaitMax/2) {
                    return WAITING;
                } else if (latency < mWaitMax) {
                    return WAITED_HALF;
                }
            }
            return OVERDUE;
        }

这边mCompleted是衡量消息有没有被处理的标志位

  • true表示处理过了,返回COPLETED,否则就算一下现在时间-开始排队的时间
  • 如果小于30s,则返回WAITING
  • 如果小于60s,则返回WAITED_HALF
  • 如果大于等于60s,则返回OVERDUE
 static final long DEFAULT_TIMEOUT = DB ? 10*1000 : 60*1000;

再结合这边的代码对评估的结果进行对应处理

                if (!fdLimitTriggered) {
                    final int waitState = evaluateCheckerCompletionLocked();
                    if (waitState == COMPLETED) {
                        // The monitors have returned; reset
                        waitedHalf = false;
                        continue;
                    } else if (waitState == WAITING) {
                        // still waiting but within their configured intervals; back off and recheck
                        continue;
                    } else if (waitState == WAITED_HALF) {
                        if (!waitedHalf) {
                            // We've waited half the deadlock-detection interval.  Pull a stack
                            // trace and wait another half.
                            ArrayList<Integer> pids = new ArrayList<Integer>();
                            pids.add(Process.myPid());
                            ActivityManagerService.dumpStackTraces(true, pids, null, null,
                                getInterestingNativePids());
                            waitedHalf = true;
                        }
                        continue;
                    }
  • true表示处理过了,返回COPLETED,大家就当无事发生
  • 如果小于30s,则返回WAITING,大家就当无事发生
  • 如果小于60s,则返回WAITED_HALF,设置一下waitedHalf为true,dumpStackTraces
  • 如果大于等于60s,则返回OVERDUE,问题就大发了,一般会导致重启

对应处理如下

                allowRestart = mAllowRestart;
            }

            // If we got here, that means that the system is most likely hung.
            // First collect stack traces from all threads of the system process.
            // Then kill this process so that the system will restart.
            EventLog.writeEvent(EventLogTags.WATCHDOG, subject);

            ArrayList<Integer> pids = new ArrayList<>();
            pids.add(Process.myPid());
            if (mPhonePid > 0) pids.add(mPhonePid);
            // Pass !waitedHalf so that just in case we somehow wind up here without having
            // dumped the halfway stacks, we properly re-initialize the trace file.
            final File stack = ActivityManagerService.dumpStackTraces(
                    !waitedHalf, pids, null, null, getInterestingNativePids());

            // Give some extra time to make sure the stack traces get written.
            // The system's been hanging for a minute, another second or two won't hurt much.
            SystemClock.sleep(2000);

            // Pull our own kernel thread stacks as well if we're configured for that
            if (RECORD_KERNEL_THREADS) {
                dumpKernelStackTraces();
            }

            // Trigger the kernel to dump all blocked threads, and backtraces on all CPUs to the kernel log
            doSysRq('w');
            doSysRq('l');

            // Try to add the error to the dropbox, but assuming that the ActivityManager
            // itself may be deadlocked.  (which has happened, causing this statement to
            // deadlock and the watchdog as a whole to be ineffective)
            Thread dropboxThread = new Thread("watchdogWriteToDropbox") {
                    public void run() {
                        mActivity.addErrorToDropBox(
                                "watchdog", null, "system_server", null, null,
                                subject, null, stack, null);
                    }
                };
            dropboxThread.start();
            try {
                dropboxThread.join(2000);  // wait up to 2 seconds for it to return.
            } catch (InterruptedException ignored) {}

            IActivityController controller;
            synchronized (this) {
                controller = mController;
            }
            if (controller != null) {
                Slog.i(TAG, "Reporting stuck state to activity controller");
                try {
                    Binder.setDumpDisabled("Service dumps disabled due to hung system process.");
                    // 1 = keep waiting, -1 = kill system
                    int res = controller.systemNotResponding(subject);
                    if (res >= 0) {
                        Slog.i(TAG, "Activity controller requested to coninue to wait");
                        waitedHalf = false;
                        continue;
                    }
                } catch (RemoteException e) {
                }
            }

            // Only kill the process if the debugger is not attached.
            if (Debug.isDebuggerConnected()) {
                debuggerWasConnected = 2;
            }
            if (debuggerWasConnected >= 2) {
                Slog.w(TAG, "Debugger connected: Watchdog is *not* killing the system process");
            } else if (debuggerWasConnected > 0) {
                Slog.w(TAG, "Debugger was connected: Watchdog is *not* killing the system process");
            } else if (!allowRestart) {
                Slog.w(TAG, "Restart not allowed: Watchdog is *not* killing the system process");
            } else {
                Slog.w(TAG, "*** WATCHDOG KILLING SYSTEM PROCESS: " + subject);
                WatchdogDiagnostics.diagnoseCheckers(blockedCheckers);
                Slog.w(TAG, "*** GOODBYE!");
                Process.killProcess(Process.myPid());
                System.exit(10);
            }

            waitedHalf = false;
        }
看起来就是eventlog+dumpsys+dropbox 留下重启原因, 并检查activity controller连接的调试器是否可以处理这次watchdog无响应,如果可以则继续 ,否则调用Process.killProcess(Process.myPid())和System.exit(10)重启。



3. 总结

现在分析来看watchdog就是给所有监控对象下发一个任务,隔了个30s后检查,然后通过检查结果判断系统是否出了问题,超时60s一般会导致重启。


猜你喜欢

转载自blog.csdn.net/sinat_20059415/article/details/80789402