计算机组成原理总结及思维导图

计算机组成

第一章 计算机系统概论

冯诺依曼型计算机特点

  • 1.计算机由运算器,控制器,存储器,输入和输出设备5部分组成
  • 2.采用存储程序的方式,程序和数据放在同一个存储器中,并以二进制表示。
  • 3.指令由操作码和地址码组成
  • 4.指令在存储器中按执行顺序存放,由指令计数器(即程序计数器PC)指明要执行的指令所在的储存单元地址,一般按顺序递增,但可按运算结果或外界条件而改变
  • 5.机器以运算器为中心,输入输出设备与存储器间的数据传送都通过运算器

计算机的硬件

  • 结构
  • 主要技术指标

计算机的软件

  • 结构

第三章 运算方法和运算部件

数据的表示方法和转换

  • 机器数正0负1
  • 真值:符号位加绝对值
  • 余三码:在8421码的基础上,把每个编码都加上0011
    • 当两个余三码想加不产生进位时,应从结果中减去0011;产生进位时,应将进位信号送入高位,本位加0011
  • 格雷码:任何两个相邻编码只有1个二进制位不同,而其余3个二进制位相同

带符号的二进制数据在计算机中的表示方法及加减法运算

  • 原码
    • 定义
    • 特点
    • 运算
  • 补码
    • 定义,特点和运算
      • 运算:
        结果不超过机器所能表示范围时,[X+Y]补=[X]补+[Y]补
        减法运算:
        [X–Y]补=[X+(–Y)]补=[X]补+[–Y]补
    • 加法运算逻辑事例
      • 过程
      • 加减法运算的溢出处理
        • 1.
        • 2.
        • 3.
        • 采用多符号位的补码又叫变形补码
        • 如果采用双符号位,当数为小数时,模m=4;当数为整数时,模m=2的n+2次方
  • 反码
    • 反码运算在最高位有进位时,要在最低位+1,此时要多进行一次加法运算,增加了复杂性,又影响了速度,因此很少采用
    • 由于反码运算是以2-2的-次方为模,所以,当最高位有进位而丢掉进位(即2)时,要在最低位+/-1
  • 移码
    • 特点
    • 浮点数的阶码运算
      • 移码定义:[X]移=2的n次方+X
      • 补码定义:[X]补=2的n+1次方+Y
      • 阶码求和公式
        • [X]移+[Y]补=[X+Y]移 mod2的n+1次方
        • [X]移+[-Y]补=[X-Y]移
        • 说明:如果阶码运算的结果溢出,上述条件不成立。此时,使用双符号位的阶码加法器,并规定移码的第二个符号位,即最高符号位恒用0参加加减运算,则溢出条件是结果的最高符号位为1。此时低位符号为0时,表明结果上溢;为1时,表明结果下溢。当最高符号位为0时,表明没有溢出,低位符号位为1,表明结果为正;为0时表明结果为负。
  • 笔记
    • 1
    • 2
    • 3
    • 4
  • 数据从补码和反码表示形式转换成原码
    • 自低位开始转换,从低位向高位,在遇到第一个1之前,保存各位的0不变,第一个1也不变,以后得各位按位取反,最后保持符号位不变,经历一遍后,即可得到补码
  • 定点数和浮点数
    • 浮点数
      • 根据IEEE754国际标准,常用的浮点数有两种格式
        • 单精度浮点数(32位),阶码8位(含一位符号位),尾数24(含一位符号位),取值范围:-2的127次方~(1-2的-23次方)*2的127次方
        • 双精度浮点数(64位),阶码11位(含一位符号位),尾数53位(含一位符号位),取值范围:-2的1023次方~(1-2的-52次方)*2的1023次方
        • Nmax=Mmax*2的Emax
          Nmin=Mmin*2的Emax
      • 为了保证数据精度,尾数通常用规格化形式表示:当R=2,且尾数值不为0时,其绝对值应大于或等于(0.5)10
        • 左规
        • 右规

二进制乘法运算

  • 定点原码一位乘法
    • 两个原码数相乘,其乘积的符号为相乘两数符号的异或值,数值则为两数绝对值之积
    • 表达式
    • 电路框架
    • 修正
      • 1.在机器内多个数据一般不能同时相加,一次加法操作只能求出两数之和,因此每每求得一个相加数,就与上次部分积相加
      • 2.人工计算时,相加数逐次向左偏移一位,由于最后的乘积位数是乘数(或被乘数)的两倍,如按此算法在机器中运算,加法器也需增到两倍。观察计算过程很容易发现,在求本次部分积时,前一次部分积的最低位不再参与运算,因此可将其右移一位,相加数可直送而不必偏移,于是用N位加法器就可实现两个N位数相乘
      • 部分积右移时,乘数寄存器同时右移一位,这样可以用乘数寄存器的最低位来控制相加数(取被乘数或零),同时乘数寄存器的最高位可接受部分积右移出来的一位,因此,完成乘法运算后,A寄存器中保存乘积的高位部分,乘数寄存器中保存乘积低位部分
    • 例题
    • 控制流程图
  • 定点补码一位乘法
    • 表达式

二进制除法

  • 加减交替法
    • 当余数为正时,商上1,求下一位商的办法是,余数左移一位,再减去除数;当余数为负时,商上0,求下一位商的办法是,余数左移一位,再加上除数。此方法不用恢复余数,所以又叫不恢复余数法。但若最后一次上商为0而又需得到正确余数,则在这最后扔需恢复余数

浮点数的运算方法

  • 浮点数的加减法运算
    • 1.对阶操作
      • 求出△E,再对小的进行移位
    • 2.尾数的加减运算
    • 3.规格化操作
      • 规则简化是符号位和数值最高位不同,即00.1xxxx或11.0xxxx
    • 4.舍入
      • 超出表示范围的高位为1舍入
    • 5.检查阶码是否溢出
  • 浮点数的乘除法运算
    • 1.浮点数阶码运算(移码)
      • 牢记公式
        • [X+Y]移=[X]移+[Y]补
        • [X–Y]移=[X]移+[–Y]补
    • 2.按照一位乘或加减交替除运算

运算部件

  • ABC寄存器作业

数据校验码

  • 鉴定方法
    • 有无差错能力
    • 是否能合理增大码距
  • 奇偶校验码
    • 能发现数据代码中一位或奇数个位出错情况的编码
    • 实现原理是使码距由1增加到2
    • 电路图
  • 海明校验码
    • 2∧r≥k+r+1
    • 2∧(r–1)≥k+r
    • 海明码位号和校验位位号的关系
    • 笔记
    • 电路图
    • 海明码码距为4
  • 循环冗余校验码(CRC)
    • CRC码可以发现并纠正信息存储或传送过程中连续出现的多位错误
    • CRC码一般是指k位信息码之后拼接r位校验码
    • 模2运算
      • 模2加减
      • 模2乘除
      • 异或逻辑
    • CRC的译码与纠错
      • 更换不同的待测码字可以证明:余数与出错位的对应关系是不变,只与码制和生成多项式有关

第七章:存储系统

存储系统的层次结构

  • cache->主存->辅存

高速缓冲存储器

  • cache的工作原理
    • 局部性原理
    • 主存地址和cache地址(P166 图7.2)
    • 块长
      • 块长一般取一个主存周期所能调出的信息长度(一般为16个字)
    • cache的容量和块的大小是影响cache的效率的重要因素
    • 命中率
      • CPU所要访问的信息是否在cache中的比率,而将所要访问的信息不在cache中的比率称为失败率
    • 一致性策略
      • 标志交换方式(写回法)
      • 通过式写入(写通法)
      • 写操作直接对主存进行,而不写入cache
  • cache组织
    • 地址映像
      • 直接映像
        • cache中许多空的位置被浪费
        • 主存地址:主存字块标记+cache字块地址+字块内地址
      • 全相联映像
        • 成本太高而不能采用
        • 主存地址:主存字块标记+字块内地址
      • 组相联映像
        • 直接映像和全相联映像的折衷
        • 主存地址:主存字块标记+组地址+块内地址

虚拟存储器

  • 存储管理部件(MMU)
    • 现代计算机一般都有辅助存储器,但具有辅存的存储系统不一定是虚拟存储系统
    • 虚拟存储系统的特点
      • 允许用户程序用比主存大的多的空间来访问主存
      • 每次访存都要进行虚实地址的转换

第九/十章:输出输出(I/O)设备/系统

设备控制器(I/O)的基本功能

  • 实现主机和外部设备之间的数据传送
  • 实现数据缓冲,以达到主机同外部设备之间的速度匹配
  • 接受主机的命令,提供设备接口的设备,并按照主机的命令控制设备

第四章 主存储器

主存储器处于全机中心低位

辅助存储器或称为外存储器,通常用来存放主存的副本和当前不在运行的程序和数据

主存储器的类型

  • 随机存储器RAM
  • 非易失性存储器

主存储器的主要技术指标

  • 主存容量
    • 64×8等等
    • 计算机可寻址的最小信息单元是一个存储字
  • 存储器存取时间
    • 启动一次存储器操作(读/写)到完成该操作所经历的时间
  • 存储周期
    • 连续启动两次独立的存储器操作

主存储器的基本操作

  • CPU通过使用AR(地址寄存器)和DR(数据寄存器)和主存进行数据传送
  • 若AR为K位字长,DR为n位字长,则允许主存包含2∧k个可寻址单元
  • CPU与主存采取异步工作方式,以ready信号表示一次访存操作的结束

读/写存储器

  • 随机存储器(RAM)按存储元件在运行中能否长时间保存信息分为静态存储器和动态存储器
  • 静态存储器,利用触发器保存信息,只要不断电,信息就不会丢失
    • 电路简图
    • MOS静态存储结构图
  • 动态存储器,利用MOS电容存储电荷来保存信息,需要不断给电容充电才能使信息来保存信息
    • 电路简图
    • 16K×1位动态存储器框图
    • 再生
      • 集中式
      • 分散式
      • 时间小于或等于2ms
      • 行读出再生

非易失性半导体存储器

  • 只读存储器ROM
  • 可编程序的只读存储器PROM
  • 可擦可编程序的只读存储器EPROM
  • 可电擦可编程序只读存储器E2PROM
  • 快擦除读写存储器Flash Memory

存储器的组成与控制

  • 存储器容量扩展
    • 位扩展:用多个存储器芯片对字长进行扩充
    • 字扩展:增加存储器中字的数量
    • 字位扩展,假设一个存储器的容量为M×N位,若使用L×K位存储器芯片,那么,这个存储器共需要(M/L)×(N/K)个存储器芯片

多体交叉存储器

  • 提高访存速度的方式
    • 采用高速器件
    • 采用层次结构
    • 调整主存结构
  • 计算机中大容量的主存可由多个存储体组成,每个存储体都具有自己的读写线路,地址寄存器和数据寄存器,称为”存储模块”。这种多模块存储器可以实现重叠与交叉存取
  • 第i个模块M的地址编号应按下式给出:M×j+i
  • 连续地址分布在相邻的不同模块内,而同一模块内的地址都是不连续的

第五章:指令系统

指令系统的发展

  • 20世纪70年代末人们提出了便于VLSI实现的精简指令系统计算机,简称RISC,同时将指令系统越来越复杂的计算机称为复杂指令系统计算机,简称CISC

指令格式

  • 结构(操作码+地址码)
    • 操作码
    • 操作数的地址
    • 操作结果的存储地址
    • 下一条指令的地址
  • 零地址指令
  • 一地址指令
  • 二地址指令
  • 三地址指令
  • 多地址指令
  • 指令操作码的扩展技术
    • 指令操作码的长度决定了指令系统中完成不同操作的指令数
    • 若某机器的操作码长度固定为K位,则它最多只能有2^K条不同指令
    • 指令操作码两种格式
      • 固定格式
        • 优点:对于简化硬件设计,减少指令译码时间非常有利
        • 缺点:指令少,浪费地址
      • 可变格式(分散地放在字的不同字段)
        • 优点:指令多,缩短指令平均长度,减少程序总位数,增加指令字所能表示的操作信息
        • 缺点:译码复杂,控制器的设计难度增大
    • 拓展方法的一个重要原则
      • 使用频度(即指令在程序中出现概率)高的指令应分配短的操作码,使用频度低的指令相应地分配较长的操作码
  • 指令系统的兼容性
    • 保持系统向上兼容

精简指令系统计算机(RISC)——用于小型机

复杂指令系统计算机(CISC)——用于大型机

第六章:中央处理器

计算机工作过程

  • 加电——》产生reset信号——》执行程序——》停机——》停电

控制器的组成

  • 控制器的功能
    • 取指令
    • 分析指令
    • 执行指令
    • 控制程序和数据的输入和结果输出
    • 对异常情况和某些请求的处理
  • 控制器的组成
    • 程序计数器(PC)
      • 即地址寄存器,用来存放当前正在执行的指令地址或即将要执行的下一条指令地址
    • 指令寄存器(IR)
      • 用以存放当前正在执行的指令,以便在指令执行过程中控制完成一条指令的全部功能
    • 指令译码器或操作码译码器
      • 对指令寄存器中的操作码进行分析解释,产生相应的控制信号
    • 脉冲源及启停线路
      • 脉冲源参数一定评率的脉冲作为整个机器的时钟脉冲,是机器周期和工作脉冲的基准信号,在机器刚加电时,还应产生一个总清信号(reset)
    • 时序控制信号形成部件
      • 当程序启动后,在CLK时钟作用下,根据当前正在执行的指令的需要,产生相应的时序控制信号,并根据被控制功能部件的反馈信号调整时序控制信号
    • 三条假设
      • 程序是存放在主存中的,当执行完一条指令后才从主存中取下一条指令(非流水线)
      • 指令的长度是固定的,并限制了寻址方式的多样化
      • 在程序运行前,程序和数据都已存在主存中
  • 指令执行过程(运算器和控制器配合)
    • 组成控制器的基本电路
      • 具有记忆功能的触发器以及由它组成的寄存器,计数器和存储单元
      • 没有记忆功能的门电路及由它组成的加法器,算术逻辑运算单元(ALU)和各种逻辑电路
    • 举例
      • 加法
        • 取指令——》计算地址——》取数——》运算送结果
      • 要能看懂时序图
      • 条件转移指令
        • 取指令——》计算地址
    • 控制器的功能就是按每一条指令的要求产生所需的控制信号
    • 产生控制信号的方法
      • 微程序控制
      • 硬布线控制

微程序控制计算机的基本工作原理

  • 基本概念
    • 微指令
      • 在微程序控制的计算机中,将由同时发出的控制信号所执行的一组微操作
    • 微命令
      • 将指令分为若干条微指令,按次序执行这些微指令。组成微指令的操作即微命令
    • 微程序
      • 计算机的程序由指令序列构成,而计算机每条指令的功能均由微指令序列解释完成,这些微指令序列的集合就叫做微程序
    • 控制存储器
      • 微程序一般是存放在专门的存储器中的,由于该存储器主要存放控制命令(信号)与下一条执行的微指令地址(简称下址)
    • 执行一条指令实际上就是执行一段存放在控制存储器中的微程序
  • 实现微程序控制的基本原理
    • 控制信号(23条)
    • 书上P123页为加法的过程
    • 微指令格式:控制字段+下址字段
    • 23个控制位,12个下址位——》容量为4K
    • 取址微指令的操作对所有指令都是相同的,所以是一条公用的微指令,其下址由操作码译码产生
  • 微程序控制器
  • 时序信号及工作脉冲的形成

微程序设计技术

  • 如何缩短微指令字长
    • 直接控制法(容量太小)
    • 字段直接编译法
      • 选出互斥的微指令
      • 每个字段都要留出一个代码,表示本段不发出任何指令(000)
    • 字段间接编译法
      • 指令之间相互联系的情况
      • 举例:A为0-7,B为0-3,如果是直接编译——3+2=5,如果是间接编译——3+1=4
    • 常熟源字段E(了解)
  • 如何减少微指令长度
    • 现行微指令/微地址
    • 后继微指令/微地址
    • 增量与下址字段结合产生后继微指令的方法
      • 下址字段分成:转移控制字段BCF和转移地址字段BAF
      • BAF有两种情况
        • 与uPC的位数相等——转移灵活,但增加微指令长度
        • 比uPC短——转移地址收到限制,但可缩短微指令长度
    • 多路转移方式
      • 一条微指令存在多个转移分支的情况称为多路转移
    • 微中断
  • 如何提高微程序的执行速度
  • 微指令格式
    • 水平型微指令——直接控制,字段编译(直接、间接)
    • 垂直型微指令
  • 微程序控制存储器
  • 动态微程序设计
  • 控制存储器的操作(P136)
    • 串行方式
    • 并行方式——比串行多了微指令寄存器

硬布线控制的计算机(RISC)——特点快

  • 形成操作控制信号的逻辑框图(P141)
  • 操作控制信号的产生
    • 取值周期cy1所产生的信号对所有指令都是相同的,即与当前执行的指令无关,逻辑式得到最简单的形式
    • 通常,同一个控制控制信号在若干条指令的某些周期(或再加上一些条件)中都需要,为此需要把它们组合起来
    • 同种类型的指令所需要的控制信号大部分是相同的,仅有少量区别
    • 在确定指令的操作码时(即对具体指令赋予二进制操作码),为了便于逻辑表达式的化简以减少逻辑电路数量,往往给予特别关注

流水线工作原理

  • P147
  • 相关问题
    • 流水线阻塞(P163-6.15)

第八章:辅助存储器

半导体存储器可随机访问任一单元,而辅助存储器一般为串行访问存储器

串行存储器

  • 顺序存取存储器
  • 直接存取存储器

辅助存储器的技术指标

  • 存储密度
    • 定义:单位长度或单位面积磁层表面磁层所存储的二进制信息量
    • 道密度
      • 沿磁盘半径方向单位长度的磁道数称为道密度,单位为道/英寸tpi或道/毫米tpmm
    • 位密度或线密度
      • 单位长度磁道所能记录二进制信息的位数叫位密度或线密度,单位为位/英寸bpi或位/毫米bpmm
    • 每个磁道所存储的信息量是一样的
  • 存储容量
  • 寻址时间
    • 平均寻址时间Ta=平均找道时间Ts+平均等待时间Tw
  • 数据传输率
  • 误码率
  • 价格

磁盘存储器

  • 温彻斯特磁盘简称温盘
  • 磁盘存储器由驱动器(HDD),控制器(HDC)和盘片组成
  • 最外面的同心圆叫0磁道,最里面的同心圆假设称为n磁道
  • 驱动器的定位驱动系统实现快速精准的磁头定位
  • 主轴系统的作用是带动盘片按额定转速稳定旋转
  • 数据控制系统的作用是控制数据的写入和读出,包括寻址,磁头旋转,写电流控制,读出放大,数据分离
  • 磁盘控制器有两个方向的接口
    • 与主机的接口
    • 与驱动器(设备)的接口
      XMind: ZEN - Trial Version
      计算机组成原理思维导图图片

猜你喜欢

转载自blog.csdn.net/caoyang_he/article/details/80741276