WEB 3D技术 three.js 包围盒

本文 我们来说 包围盒

如下图所示 就是一个方框 框住我们整个物体
在这里插入图片描述
它的作用 比较明显的就是 当用户点击某个物体 我们用包围盒套住 用户能够很直观的知道自己当前选中的物体是哪一个
还有就是 比如 我们物体做的比较复杂 是非常多顶点构建的 那么 我们判断它有没有和其他物体接触就很麻烦 但 有了包围盒 我们只需要判断包围盒有没有接触即可

然后 我们官网搜索 BufferGeometry
在这里插入图片描述
包围盒是所有几何体都有的属性

这里 我们有两个 一个是 包围盒 另一个是 包围圈
简单说 一个是包围成立方体 另一个是成球形包围
在这里插入图片描述
默认情况 例如我们自己创建的几何体 是不会有这个属性的 我们需要自己通过 computeBoundingBox 去计算
在这里插入图片描述
我这里 先写成这样的代码

import './style.css'
import * as THREE from "three";
import {
    
     OrbitControls } from "three/examples/jsm/controls/OrbitControls.js";
import {
    
     RGBELoader } from "three/examples/jsm/loaders/RGBELoader.js";
import {
    
     GLTFLoader } from "three/examples/jsm/loaders/GLTFLoader.js";

//创建相机
const camera = new THREE.PerspectiveCamera(
    45, //视角 视角越大  能看到的范围就越大
    window.innerWidth / window.innerHeight,//相机的宽高比  一般和画布一样大最好
    0.1,
    1000
);
const scene = new THREE.Scene();

const gltfLoader = new GLTFLoader();
gltfLoader.load(
    // 模型路径
    "/gltf/scene.gltf",
    // 加较完成同调
    (gltf) =>{
    
    
        gltf.scene.traverse((child) => {
    
    
            if (child.isMesh) {
    
    
                child.frustumCulled = false;
                child.castShadow = true;
                child.material.emissive = child.material.color;
                child.material.emissiveMap = child.material.map;
            }
        });
        scene.add(gltf.scene);
    }
)

//c创建一个canvas容器  并追加到 body上
const renderer = new THREE.WebGLRenderer(0);
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

//设置相机位置   这里 我们设置Z轴  大家可以试试  S Y 和 Z  都是可以的
camera.position.z = 5;
//设置相机默认看向哪里   三个 0  代表 默认看向原点
camera.lookAt(0, 0, 0);
//将内容渲染到元素上
renderer.render(scene, camera);
const controls = new OrbitControls(camera, renderer.domElement);

let rgbeloader = new RGBELoader();
rgbeloader.load("/xhdr/Alex_Hart-Snow_Pano_2k.hdr",(texture) =>{
    
    
    scene.background = texture;
    texture.mapping = THREE.EquirectangularReflectionMapping;
})

function animate() {
    
    
    controls.update();
    requestAnimationFrame(animate);
    /*cube.rotation.x += 0.01;
    cube.rotation.y += 0.01;*/
    renderer.render(scene, camera);
}
animate();

这里 就是简单引入了 hdr场景贴图 和一个 glb 车的3D元素
在这里插入图片描述
那么 现在 我们要给这台车 做一个包围盒

首先 我们需要拿到它的几何体对象 先在代码中 控制台打印gltf对象下面的 scene
在这里插入图片描述
然后 下面有两个比较重要的内容 它的name 和 id
在这里插入图片描述
getObjectById 通过id获取元素对象
getObjectByName 通过name属性获取元素对象
我们肯定是用name 会更方便一点

我们的name 叫 webvrmodel_Scene
我们改写代码如下

const gltfLoader = new GLTFLoader();
gltfLoader.load(
    // 模型路径
    "/gltf/scene.gltf",
    // 加较完成同调
    (gltf) =>{
    
    
        gltf.scene.traverse((child) => {
    
    
            if (child.isMesh) {
    
    
                child.frustumCulled = false;
                child.castShadow = true;
                child.material.emissive = child.material.color;
                child.material.emissiveMap = child.material.map;
            }
        });
        scene.add(gltf.scene);

        let webvrmodel = gltf.scene.getObjectByName("webvrmodel_Scene");
        console.log(webvrmodel);
    }
)

通过 getObjectByName 寻找name 为 webvrmodel_Scene的对象
然后 下面用console.log 输出在控制台上

运行结果如下
在这里插入图片描述
这里 虽然拿到了 但其实 我们也不需要这么麻烦
可以直接这样改

const gltfLoader = new GLTFLoader();
gltfLoader.load(
  "/gltf/scene.gltf",
  (gltf) => {
    
    
    gltf.scene.traverse((child) => {
    
    
      if (child.isMesh) {
    
    
        child.frustumCulled = false;
        child.castShadow = true;
        child.material.emissive = child.material.color;
        child.material.emissiveMap = child.material.map;
        const geometry = child.geometry;
        geometry.computeBoundingBox()
        let duckBox = geometry.boundingBox;
        console.log(duckBox);
      }
    });
    scene.add(gltf.scene);
  }
);

拿到 geometry 几何体对象字段
然后 通过对象 调用 computeBoundingBox计算出 包围盒对象
然后 通过 geometry.boundingBox 获取他的包围盒对象 并在控制台打印
这里正常的几何体对象都可以调用computeBoundingBox 取 boundingBox
是因为 我们这是导入的gltf资源 所以还要想办法去拿这个几何体的对象

运行如下
在这里插入图片描述
包围盒对象 给了两个属性 max和min
两个三维向量 但是 两个形成一个包围盒 这是为什么呢?

它的两个向量 其实就是两个点的坐标
因为 他是一个很规整的立方体 包围盒 所以 它只需要如下图的两位点的位置 就可以拉出一个立方体
在这里插入图片描述
那么 既然已经拿到最小和最大两个值 那么 我们就可以拉出这样一个包围盒工具
我们可以将代码改成这样

const gltfLoader = new GLTFLoader();
gltfLoader.load(
  "/gltf/scene.gltf",
  (gltf) => {
    
    
    gltf.scene.traverse((child) => {
    
    
      if (child.isMesh) {
    
    
        child.frustumCulled = false;
        child.castShadow = true;
        child.material.emissive = child.material.color;
        child.material.emissiveMap = child.material.map;
        const geometry = child.geometry;
        geometry.computeBoundingBox()
        let boxHelper = new THREE.Box3Helper(geometry.boundingBox, 0xffff00);
        scene.add(boxHelper);
      }
    });
    scene.add(gltf.scene);
  }
);

THREE.Box3Helper 需要两个参数 第一个是 需要处理的包围盒对象 就是我们从gltf几何体对象上拿到的 boundingBox属性 第二个为一个颜色属性
然后将这个包围盒对象 add到场景中

运行代码如下
在这里插入图片描述
我们外面这个包围盒的线就出来了

几何体 则更简单 我们编写代码如下

import './style.css'
import * as THREE from "three";
import {
    
     OrbitControls } from "three/examples/jsm/controls/OrbitControls.js";
import {
    
     RGBELoader } from "three/examples/jsm/loaders/RGBELoader.js";
//创建相机
const camera = new THREE.PerspectiveCamera(
    45, //视角 视角越大  能看到的范围就越大
    window.innerWidth / window.innerHeight,//相机的宽高比  一般和画布一样大最好
    0.1,
    1000
);
const scene = new THREE.Scene();
let uvTexture = new THREE.TextureLoader().load("/textUv.jpg");

const geometry = new THREE.BufferGeometry();
// 创建顶点数据
const vertices = new Float32Array([
    -1.0,-1.0 ,0.0,
    1.0 ,-1.0, 0.0,
    1.0 ,1.0 ,0.0,
    -1.0 ,1.0, 0.0
])
geometry.setAttribute("position", new THREE.BufferAttribute(vertices, 3));
const indices = new Uint16Array([0 ,1 ,2, 0, 3, 2]);
const material = new THREE.MeshBasicMaterial({
    
    
    map: uvTexture,
    side: THREE.DoubleSide
})
const uv = new Float32Array([
    0, 0, 1, 0, 1, 1, 0, 1
])
geometry.setAttribute("uv", new THREE.BufferAttribute(uv, 2));
const normals = new Float32Array([
    0, 0, 1,
    0, 0, 1,
    0, 0, 1,
    0, 0, 1
])
geometry.setAttribute("normal", new THREE.BufferAttribute(normals, 3));
geometry.setIndex(new THREE.BufferAttribute(indices, 1));
console.log(geometry);
const cube = new THREE.Mesh(geometry, material);
scene.add(cube)

//c创建一个canvas容器  并追加到 body上
const renderer = new THREE.WebGLRenderer(0);
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

//设置相机位置   这里 我们设置Z轴  大家可以试试  S Y 和 Z  都是可以的
camera.position.z = 5;
//设置相机默认看向哪里   三个 0  代表 默认看向原点
camera.lookAt(0, 0, 0);
//将内容渲染到元素上
renderer.render(scene, camera);
const controls = new OrbitControls(camera, renderer.domElement);

let rgbeloader = new RGBELoader();
rgbeloader.load("/xhdr/Alex_Hart-Snow_Pano_2k.hdr",(texture) =>{
    
    
    scene.background = texture;
    texture.mapping = THREE.EquirectangularReflectionMapping;
    material.envMap = texture;
})

function animate() {
    
    
    controls.update();
    requestAnimationFrame(animate);
    /*cube.rotation.x += 0.01;
    cube.rotation.y += 0.01;*/
    renderer.render(scene, camera);
}
animate();

在这里插入图片描述
然后添加代码

geometry.computeBoundingBox()
let boxHelper = new THREE.Box3Helper(geometry.boundingBox, 0xffff00);
scene.add(boxHelper);

在这里插入图片描述
我们外面的包围盒就出来了
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/weixin_45966674/article/details/135427766