【pytorch】CNN卷积神经网络


import os

# third-party library
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt

# torch.manual_seed(1)    # reproducible

# Hyper Parameters
EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 50
LR = 0.001              # learning rate
DOWNLOAD_MNIST = False


# Mnist digits dataset
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):  # 如果已经下载可以不用下载
    # not mnist dir or mnist is empyt dir
    DOWNLOAD_MNIST = True

train_data = torchvision.datasets.MNIST(
    root='./mnist/',
    train=True,                                     # this is training data
    transform=torchvision.transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                                    # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
    download=DOWNLOAD_MNIST,
)

# plot one example
print(train_data.train_data.size())                 # (60000, 28, 28)
print(train_data.train_labels.size())               # (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[0])
plt.show()

# Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

# pick 2000 samples to speed up testing
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]


class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(         # input shape (1, 28, 28)
            nn.Conv2d(
                in_channels=1,              # input height
                out_channels=16,            # n_filters
                kernel_size=5,              # filter size
                stride=1,                   # filter movement/step
                padding=2,                  # if want same width and length of this image after con2d, padding=(kernel_size-1)/2 if stride=1
            ),                              # output shape (16, 28, 28)
            nn.ReLU(),                      # activation
            nn.MaxPool2d(kernel_size=2),    # choose max value in 2x2 area, output shape (16, 14, 14)
        )
        self.conv2 = nn.Sequential(         # input shape (16, 14, 14)
            nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)
            nn.ReLU(),                      # activation
            nn.MaxPool2d(2),                # output shape (32, 7, 7)
        )
        self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
        output = self.out(x)
        return output, x    # return x for visualization

cnn = CNN()
print(cnn)  # net architecture

optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted

# following function (plot_with_labels) is for visualization, can be ignored if not interested
# from matplotlib import cm
# try: from sklearn.manifold import TSNE; HAS_SK = True
# except: HAS_SK = False; print('Please install sklearn for layer visualization')
# def plot_with_labels(lowDWeights, labels):
#     plt.cla()
#     X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
#     for x, y, s in zip(X, Y, labels):
#         c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
#     plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01)

# training and testing
if __name__ == '__main__': # win10必加
    # plt.ion()

    for epoch in range(EPOCH):
        for step, (b_x, b_y) in enumerate(train_loader):   # gives batch data, normalize x when iterate train_loader

            output = cnn(b_x)[0]               # cnn output
            loss = loss_func(output, b_y)   # cross entropy loss
            optimizer.zero_grad()           # clear gradients for this training step
            loss.backward()                 # backpropagation, compute gradients
            optimizer.step()                # apply gradients

            if step % 50 == 0:
                test_output, last_layer = cnn(test_x)
                pred_y = torch.max(test_output, 1)[1].data.squeeze()
                accuracy = float(sum(pred_y == test_y)) / float(test_y.size(0))
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
                # if HAS_SK:
                #     # Visualization of trained flatten layer (T-SNE)
                #     tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
                #     plot_only = 500
                #     low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
                #     labels = test_y.numpy()[:plot_only]
                #     plot_with_labels(low_dim_embs, labels)
    # plt.ioff()

    # print 10 predictions from test data
    test_output, _ = cnn(test_x[:10])
    pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
    print(pred_y, 'prediction number')
    print(test_y[:10].numpy(), 'real number')

猜你喜欢

转载自blog.csdn.net/acbattle/article/details/80659170
今日推荐