《算法竞赛·快冲300题》每日一题:“糖果配对”

算法竞赛·快冲300题》将于2024年出版,是《算法竞赛》的辅助练习册。
所有题目放在自建的OJ New Online Judge
用C/C++、Java、Python三种语言给出代码,以中低档题为主,适合入门、进阶。


糖果配对” ,链接: http://oj.ecustacm.cn/problem.php?id=1735

题目描述

【题目描述】 现在有N个小朋友,有M个不同的糖果。每个小朋友有自己最喜欢的糖果和第二喜欢的糖果。
   给定一些糖果,小朋友们会排队来领糖果,对于每个小朋友而言,如果其最喜欢的糖果还在,将会选择最喜欢的糖果,否则选择第二喜欢的糖果。
   如果二者都不在,那么这个小朋友将会哇哇大哭。
   你可以任意排列对小朋友排队的顺序,但是要保证哭的小朋友数量最小。
   请求出最小的哭泣小朋友的数量。
【输入格式】 输入格式
   输入第一行包含N和M。(N,M≤100000)
   接下来有N行,每i行包含两个数字fi和si表示第i个小朋友最喜欢和第二喜欢的糖果编号。
【输出格式】 输出一个数字表示答案。
【输入样例】

8 10
2 1
3 4
2 3
6 5
7 8
6 7
7 5
5 8

【输出样例】

1

题解

   每个孩子有最喜欢的糖果和次喜欢的糖果,从二者中选择一个,相当于一个孩子连接了两个糖果。把孩子和糖果建模为一个图,孩子是图上的边,糖果是图上的点。要求每条边和每个点进行配对,问最多有多少个点和边能够匹配?
   把样例画成下面的图,图中的边是孩子,点是孩子喜欢的糖果。例如边{1-2}是第1个孩子喜欢的糖果1、2。根据样例的数据画出2个连通子图,一个子图是{1,2,3,4},它是一棵树;一个子图是{5,6,7,8},它是一个有环图。

   容易分析得出:如果连通子图是一棵树,则匹配的数量就等于边数,或者等于点的数量减一;如果连通子图是一个有环图,匹配的数量就等于点数。例如上图中,左边子图是有3条边的树,能满足3个小朋友;右边子图是有4个点的有环图,能满足4个小朋友。
   本题经过转换后是这样一个图的连通性问题:(1)构造图;(2)查询其中有多少连通子图;(3)对每个子图,区分它是树还是有环图,分别统计边和点的数量。
   图的连通性,编码可以用BFS、DFS、并查集。下面用编码比较简单的并查集求解。
   首先读取点和边,用并查集处理,属于同一个子图的点,它们的集都相同,同时用ring标注这个集是否是有环图。
   如何用并查集处理有环图?读2个点u、v构成的边u-v时,如果发现u、v已经在以前读取和处理过,且属于一个集,说明边u-v把原来的子图变成了一个有环图。
   读取和处理完所有的点和边后,上面图示的的两个子图变成了下面的两个并查集。并查集2中包含点{1, 2, 3, 4},并查集6中包含点{5, 6, 7, 8}。

   请注意两个关键:
   (1)并查集必须用路径压缩,这样才能使得一个集中的每个点所属的集相同,例如{1, 2, 3, 4}都属于并查集2。
   (2)需要标记每个并查集是树还是有环图。下面的代码用参数ring来标记一个点是否在有环图上。只要这个并查集中有一个点的ring标记为true,这个并查集就是一个有环图。
   最后就是搜索有多少并查集,并统计每个并查集内部有多少个糖果匹配。只需用O(nlogn)的计算量即可完成这2个任务:
   (1)对所有并查集按集的大小排序,例如{1, 2, 3, 4}、{5, 6, 7, 8}这个两个并查集的点对应的集是{2, 2, 2, 2}、{6, 6, 6, 6},按集的大小排序后,同一个集的点都排在一起。排序的计算量为O(nlogn)。
   (2)从小到大遍历所有的集,如果集的大小一样,它们就属于一个集。统计这个集内部的糖果匹配数量。计算量为O(n)。
【重点】 图的连通性 。

C++代码

  

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
struct child {
    
    int s; bool ring;} c[N];         //s: 并查集;  ring:这个点是否在一个有环图上
bool cmp(struct child a, struct child b){
    
     return a.s < b.s;}    //按s排序
int find_set(int x){
    
                               //并查集:查询
    if(c[x].s!=x)   c[x].s=find_set(c[x].s);   //路径压缩
    return c[x].s;
}
int main(){
    
    
    int n,m;    cin>>n>>m;
    for(int i=1;i<=m;i++)  c[i].s = i,c[i], c[i].ring = false;       //并查集初始化
    for(int i=1;i<=n;i++) {
    
    
        int u,v;  cin>>u>>v;                 //读取一条边上的两个点
        u = find_set(u);                     //查询它们的集
        v = find_set(v);
        if(u==v){
    
                    //已经是同一个集,说明这个集是一个有环图
            c[u].ring = true;    //标注这个集是一个有环图
            continue;            //已经在一个集中了,不用合并
        }
        c[v].s = c[u].s;         //u、v还不在一个集中,进行并查集合并
    }
    for(int i=1;i<=m;i++)
        find_set(i);                 //利用查询进行路径压缩,使同一个集的点的所属的集相同
    sort(c+1,c+m+1,cmp);             //对集排序,让同一个集的点排在一起
    int tot = 0;                     //统计能满足多少小朋友
    for(int i=2;i<=m;i++) {
    
              //遍历有多少个集
        bool Ring = false;           //这个集是否为有环图,初始化为非环图
        int point = 1;               //统计这个集表示的连通子图内有多少个点
        while(c[i].s == c[i-1].s) {
    
        //如果两点的集s相同,说明它们属于同一个子图
            if(c[i-1].ring || c[i].ring )  Ring = true;  //这个集是一个有环图
            point++;                   //统计这个集合的点的数量            
i++;                       //遍历这个集
        }
        if(Ring==false) point--;      //不是有环图,是一棵树
        tot += point;
    }
    cout<<n-tot;          //不能满足的小朋友人数
    return 0;
}

Java代码

import java.util.*;
public class Main {
    
    
    static class Child {
    
    
        int s;
        boolean ring;
        public Child(int s, boolean ring) {
    
    
            this.s = s;
            this.ring = ring;
        }
    }
    static Child[] c;
    static int n, m;
    public static void main(String[] args) {
    
    
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        m = scanner.nextInt();
        int N = 100010;
        c = new Child[N + 1];
        for (int i = 1; i <= N; i++)   c[i] = new Child(i, false);
        for (int i = 1; i <= n; i++) {
    
    
            int u = scanner.nextInt();
            int v = scanner.nextInt();
            u = findSet(u);
            v = findSet(v);
            if (u == v) {
    
    
                c[u].ring = true;
                continue;
            }
            c[v].s = c[u].s;
        }
        for (int i = 1; i <= m; i++)       findSet(i);
        Arrays.sort(c, 1, m + 1, new Comparator<Child>() {
    
    
            public int compare(Child a, Child b) {
    
     return a.s - b.s; }
        });
        int tot = 0;
        for (int i = 2; i <= m; i++) {
    
    
            boolean ring = false;
            int point = 1;
            while (c[i].s == c[i - 1].s) {
    
    
                if (c[i - 1].ring || c[i].ring)   ring = true;
                point++;
                i++;
            }
            if (!ring)   point--;
            tot += point;
        }
        System.out.println(n - tot);
    }
    static int findSet(int x) {
    
    
        if (c[x].s != x)   c[x].s = findSet(c[x].s);
        return c[x].s;
    }
}

Python代码

  

import sys
sys.setrecursionlimit(1000000)
import functools
N = 100010
class Child:
    def __init__(self, s, ring):
        self.s = s
        self.ring = ring
def cmp(a, b):   return a.s - b.s
def find_set(x):
    if c[x].s != x:  c[x].s = find_set(c[x].s)
    return c[x].s
c = []
n, m = map(int, input().split())
for i in range(N):  c.append(Child(i, False))
for i in range(1,n+1):
    u, v = map(int, input().split())
    u = find_set(u)
    v = find_set(v)
    if u == v:
        c[u].ring = True
        continue
    c[v].s = c[u].s
for i in range(1, m + 1):  find_set(i)
c[1:] = sorted(c[1:], key=functools.cmp_to_key(cmp))
tot = 0
i = 2
while i <= m:
    Ring = False
    point = 1
    while c[i].s == c[i - 1].s:
        if c[i - 1].ring or c[i].ring:  Ring = True
        point += 1
        i += 1
    if not Ring:  point -= 1
    tot += point
    i += 1
print(n - tot)

猜你喜欢

转载自blog.csdn.net/weixin_43914593/article/details/132379048