REDIS16_LRU算法概述、查看默认内存、默认是如何删除数据、缓存淘汰策略

①. LRU算法概述

  • ①. LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的数据给予淘汰 (leetcode-cn.com/problems/lru-cache)

  • ②. LRU算法题来源
    在这里插入图片描述

  • ③. 设计思想

  1. 所谓缓存,必须要有读+写两个操作,按照命中率考虑,写操作+读操作时间复杂度都需要为O(1)
  2. 特征要求:
    必须要有顺序之分,一区分最近使用的和很久没有使用的数据排序
    写和读操作一次搞定
    如果容量坑位满了要删除最不长用的数据,每次信访问还要把心得数据插入到对头

在这里插入图片描述

在这里插入图片描述

  • ④. 使用LinkHashMap实现LRU算法,LinkedHashMap的注释中写明了: LinkedHashMap非常适合用来构建 LRU 缓存
    在这里插入图片描述
public class LRUCacheDemo <k,V>extends LinkedHashMap<k,V> {
    
    

    /**
     * 缓存坑位
     */
    private int capacity;

    public LRUCacheDemo(int capacity) {
    
    
        /**
         * @param  initialCapacity the initial capacity
         * @param  loadFactor      the load factor
         * @param  accessOrder     the ordering mode - <tt>true</tt> for
         *         access-order, <tt>false</tt> for insertion-order
         */
        super(capacity,0.75F,true);
        this.capacity=capacity;
    }

    @Override
    protected boolean removeEldestEntry(Map.Entry<k, V> eldest) {
    
    
        return super.size() > capacity;
    }

    public static void main(String[] args) {
    
    
        LRUCacheDemo lruCacheDemo = new LRUCacheDemo(3);
        lruCacheDemo.put(1,"a");
        lruCacheDemo.put(2,"b");
        lruCacheDemo.put(3,"c");
        // [1,2,3]
        System.out.println(lruCacheDemo.keySet());

        // [2,3,4]
        lruCacheDemo.put(4,"d");
        System.out.println(lruCacheDemo.keySet());

        // [2,4,3]
        lruCacheDemo.put(3,"c");
        System.out.println(lruCacheDemo.keySet());
        // [2,4,3]
        lruCacheDemo.put(3,"c");
        System.out.println(lruCacheDemo.keySet());

        // [4,3,5]
        lruCacheDemo.put(5,"c");
        System.out.println(lruCacheDemo.keySet());
    }
}
  • ⑤. 完全自己手写
public class LRUSelfCacheDemo {
    
    

    // map 负责查找,构建一个虚拟的双向链表,它里面装的就是一个个 Node 节点,作为数据载体

    // 1.构造一个node节点作为数据载体
    class Node<K, V> {
    
    
        K key;
        V value;
        Node<K, V> prev;
        Node<K, V> next;

        public Node() {
    
    
            this.prev = this.next = null;
        }

        public Node(K key, V value) {
    
    
            this.key = key;
            this.value = value;
            this.prev = this.next = null;
        }
    }

    // 2.构建一个虚拟的双向链表,,里面安放的就是我们的Node
    class DoubleLinkedList<K, V> {
    
    
        Node<K, V> head;
        Node<K, V> tail;

        public DoubleLinkedList() {
    
    
            head = new Node<>();
            tail = new Node<>();
            head.next = tail;
            tail.prev = head;
        }

        // 3.添加到头
        public void addHead(Node<K, V> node) {
    
    
            node.next = head.next;
            node.prev = head;
            head.next.prev = node;
            head.next = node;
        }

        // 4.删除节点
        public void removeNode(Node<K, V> node) {
    
    
            node.next.prev = node.prev;
            node.prev.next = node.next;
            node.prev = null;
            node.next = null;
        }

        // 5.获得最后一个节点
        public Node getLast() {
    
    
            return tail.prev;
        }
    }

    private int cacheSize;
    Map<Integer, Node<Integer, Integer>> map;
    DoubleLinkedList<Integer, Integer> doubleLinkedList;

    public LRUSelfCacheDemo(int cacheSize) {
    
    
        this.cacheSize = cacheSize;//坑位
        map = new HashMap<>();//查找
        doubleLinkedList = new DoubleLinkedList<>();
    }

    public int get(int key) {
    
    
        if (!map.containsKey(key)) {
    
    
            return -1;
        }

        Node<Integer, Integer> node = map.get(key);
        doubleLinkedList.removeNode(node);
        doubleLinkedList.addHead(node);

        return node.value;
    }

    public void put(int key, int value) {
    
    
        if (map.containsKey(key)) {
    
      //update
            Node<Integer, Integer> node = map.get(key);
            node.value = value;
            map.put(key, node);

            doubleLinkedList.removeNode(node);
            doubleLinkedList.addHead(node);
        } else {
    
    
            if (map.size() == cacheSize)  //坑位满了
            {
    
    
                Node<Integer, Integer> lastNode = doubleLinkedList.getLast();
                map.remove(lastNode.key);
                doubleLinkedList.removeNode(lastNode);
            }

            //新增一个
            Node<Integer, Integer> newNode = new Node<>(key, value);
            map.put(key, newNode);
            doubleLinkedList.addHead(newNode);

        }
    }

    public static void main(String[] args) {
    
    

        LRUSelfCacheDemo lruCacheDemo = new LRUSelfCacheDemo(3);

        lruCacheDemo.put(1, 1);
        lruCacheDemo.put(2, 2);
        lruCacheDemo.put(3, 3);
        System.out.println(lruCacheDemo.map.keySet());

        lruCacheDemo.put(4, 1);
        System.out.println(lruCacheDemo.map.keySet());

        lruCacheDemo.put(3, 1);
        System.out.println(lruCacheDemo.map.keySet());
        lruCacheDemo.put(3, 1);
        System.out.println(lruCacheDemo.map.keySet());
        lruCacheDemo.put(3, 1);
        System.out.println(lruCacheDemo.map.keySet());
        lruCacheDemo.put(5, 1);
        System.out.println(lruCacheDemo.map.keySet());

    }
}

②. 查看默认内存

  • ①. 查看Redis最大占用内存:打开redis配置文件,设置maxmemory参数,maxmemory是bytes字节类型,注意转换
    在这里插入图片描述

  • ②. redis默认内存多少可以用?
    如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB

  • ③. 一般生产上你如何配置?
    一般推荐Redis设置内存为最大物理内存的四分之三(和hashMap默认的负载因子0.75一致)

  • ④. 通过修改文件配置[1]
    在这里插入图片描述

  • ⑤. 通过命令修改[2]
    在这里插入图片描述

  • ⑥. 什么命令查看redis内存使用情况?

info memory
  • ⑦. 如果Redis内存使用超出了设置的最大值会怎样?
    在这里插入图片描述

③. 如何删除数据

  • ①. 立即删除
  1. Redis不可能时时刻刻遍历所有被设置了生存时间的key,来检测数据是否已经到达过期时间,然后对它进行删除
  2. 立即删除能保证内存中数据的最大新鲜度,因为它保证过期键值会在过期后马上被删除,其所占用的内存也会随之释放。但是立即删除对cpu是最不友好的。因为删除操作会占用cpu的时间,如果刚好碰上了cpu很忙的时候,比如正在做交集或排序等计算的时候,就会给cpu造成额外的压力,让CPU心累,时时需要删除,忙死
  3. 这会产生大量的性能消耗,同时也会影响数据的读取操作
  4. 总结:对CPU不友好,用处理器性能换取存储空间 (拿时间换空间)
  • ②. 惰性删除
  1. 数据到达过期时间,不做处理。等下次访问该数据时,如果未过期,返回数据,如果未过期,返回数据
  2. 惰性删除策略的缺点是,它对内存是最不友好的
  3. 在使用惰性删除策略时,如果数据库中有非常多的过期键,而这些过期键又恰好没有被访问到的话,那么它们也许永远也不会被删除(除非用户手动执行FLUSHDB),我们甚至可以将这种情况看作是一种内存泄漏–无用的垃圾数据占用了大量的内存,而服务器却不会自己去释放它们,这对于运行状态非常依赖于内存的Redis服务器来说,肯定不是一个好消息
  4. 总结:对memory不友好,用存储空间换取处理器性能(拿空间换时间)
  • ③. 定期删除
  1. 定期删除策略是前两种策略的折中
  2. 定期删除策略每隔一段时间执行一次删除过期键操作,并通过限制删除操作执行的时长和频率来减少删除操作对CPU时间的影响
  3. 定期删除策略的难点是确定删除操作执行的时长和频率:如果删除操作执行得太频繁,或者执行的时间太长,定期删除策略就会退化成立即删除策略,以至于将CPU时间过多地消耗在删除过期键上面。如果删除操作执行得太少,或者执行的时间太短,定期删除策略又会和惰性删除束略一样,出现浪费内存的情况。因此,如果采用定期删除策略的话,服务器必须根据情况,合理地设置删除操作的执行时长和执行频率
    在这里插入图片描述
  • ④. 总结下对于惰性删除和定期删除时
  1. 定期删除时,从来没有被抽查到
  2. 惰性删除时,也从来没有被点中使用过
  3. 引入redis缓存淘汰策略登场

④. 缓存淘汰策略

  • ①. 有哪些(redis6.0.8版本) - 这个是要背下来的各位网友
  1. noeviction: 不会驱逐任何key,农村满了就报错
  2. allkeys-lru: 对所有key使用LRU算法进行删除
  3. volatile-lru: 对所有设置了过期时间的key使用LRU算法进行删除
  4. allkeys-random: 对所有key随机删除
  5. volatile-random: 对所有设置了过期时间的key随机删除
  6. volatile-ttl: 删除马上要过期的key
  7. allkeys-lfu: 对所有key使用LFU算法进行删除
  8. volatile-lfu: 对所有设置了过期时间的key使用LFU算法进行删除
  • ②. 总结上面8种模式:2 * 4 得8、2个维度(过期键中筛选、所有键中筛选)、4个方面(LRU、LFU、random、ttl)、8个选项
  1. LRU:最近最少使用(最长时间)淘汰算法(Least Recently Used)。LRU是淘汰最长时间没有被使用的页面
  2. LFU:最不经常使用(最少次)淘汰算法(Least Frequently Used)。LFU是淘汰一段时间内,使用次数最少的页面
  • ③. 工作中使用的是哪种:maxmemory-policy allkey-lru

猜你喜欢

转载自blog.csdn.net/TZ845195485/article/details/129465654