数字孪生化水平的五大等级


数字孪生化把精度作为目标,形成了不同层次的要求,这在不同的应用场景中体现出来的效果也有一定的差异。数字孪生化水平的五大等级情况见表 在这里插入图片描述

数字孪生化水平的五大等级

第一级:以建立几何模型为目标

数字孪生体工程以建立几何模型为基础,部分工程项目不建立几何模型,因而通常无须把该项目称为数字孪生体。几何模型是任何物理世界设备或产品的第一个特征,通常在特定时间,该几何模型是一个确定的状态,因此,把它作为数字孪生化的首要目标,比较容易实现。
一些直接以几何模型建设为目标的项目,通常是为了实现“可视化”,它的好处通常有几方面:一是为管理层提供了直观可见的数据或场景,降低了管理的复杂度和难度;二是部分项目成果难以显性化,为了让上级部门、主管领导或客户了解效果,把这些不可见的结果用可视化方式展现出来;三是为更复杂的系统确定单一数据源,其他系统可以基于该可见的信息源做进一步开发。
客观来说,以上三个方面的可视化都有价值,前两个不是数字孪生体的核心目标,第三个是数字孪生体工程的要求。通过几何模型锚定单一数据源,分部件、子系统、系统和系统之系统等多个层次建立几何模型,可以为各个参与方提供一个客观的参照标准。

第二级:以仿真为目标的数据描述

为了使数字空间与物理世界的设备或产品对应的数字孪生化后的模型更有价值,通常需要对它的材料和物理特征进行描述,以便数字线程传递相关数据的时候,可以有更丰富的信息。
这个阶段完成的仿真工作,成为数字孪生化最具挑战的工作之一,虽然有超级计算或云计算等仿真利器,但由于部分仿真涉及的计算量实在太过巨大,如果不采用降阶模型技术等,仍然无法实现真正的工程应用。
第二级数字孪生化对于高端制造可能是常态,但对于大量中低端行业或者建筑、城市、能源等领域,利用传统仿真工具的成本往往太高,不具有实际的应用价值,这意味着,数字孪生体在多个行业的应用需求,呼唤低成本的数据描述工具。

第三级:多尺度场景的数据融合

当实现了设备和产品的仿真之后,数字孪生化即进入了满足多尺度场景的数据融合的需求阶段,这个阶段既需要考虑设备和产品的数据建模,还需要考虑场景或环境的建模,通过两者的共同数字孪生化,才可以形成丰富的数字孪生系统。
需要指出的是,设备和产品的建模和仿真有可能在设计的时候就已经实现了,或者事后需要重构出原有的几何模型和仿真特征,通常情况下,对环境的数字孪生化是进一步建立物理世界和数字空间交互的关键。
从技术的应用来看,人工智能在实现两者无缝数据融合方面至关重要,从国际上多家企业的实践来看,解决多尺度场景的数据融合,对数字孪生体产业化非常重要,考虑到成本问题,这也是数字孪生化的难点所在。

第四级:面向建造和运行的动态孪生

第三级数字孪生化水平满足了静态的神似,但还不具有时间轴上的孪生特征,只有实现了建造和运行过程的动态孪生,才可以称之为第四级数字孪生化。
这个阶段的数字孪生化有较大的挑战,涉及建造体系和管理体系的数字化转型,如果建造流程和管理流程无法与数字孪生化工作融合,相关数据难以贡献,自然实现不了这个阶段的动态孪生。
在一些简单的应用场景中,建造体系和管理体系与人关联不大,或者可以通过数据自动化替代人的角色,那么这个阶段的动态孪生就有可能实现了。第五级:具有自适应能力的自主孪生
如果数字孪生化发展到能够根据各种环境变化自行实现第一级到第四级数字孪生化工作,那么它就达到了最高等级的自主孪生水平。这样的目标需要实现数据自动化,需要建立在数字化、网络化和智能化的基础上。
毫无疑问,人工智能、物联网和数据科学等将在这个等级具有至关重要的作用,迄今为止,相关理论和技术尚未成熟,只有一些较简单的应用出现。例如,NASA在空间制造体系中产生了一些概念,目前也只是在增材制造模式上有一些突破,但要真正达到那样的水平,还需要长达数十年的努力。
数字孪生化技术是数字孪生体的基础部分,它的实现程度决定了数字孪生体的应用效果,在不同的行业,数字孪生化水平具有不同的判定标准,以上只是就基本的概念和特征做了描述,后续还需要根据具体的应用场景做相应的调整。
从传统学科或研究领域来看,数字孪生化的前三个等级属于传统的建模和仿真,动态孪生和自主孪生对应的第四级、第五级则需要动态数据驱动和人工智能等新一代技术的参与,特别是动态数据驱动的仿真,成为过去十年各位专家学者力求突破的地方,这也是数字孪生体的主要研究领域之一。

猜你喜欢

转载自blog.csdn.net/leva345/article/details/132982983