剖析vue常见问题(四)之vue中的diff算法

背景:首先diff算法不是vue的专属,只要采用虚拟dom的框架基本都会采用diff算法,那么为什么要采用diff算法呢以及diff算法的好处是什么呢?我们还以vue为例,从源码层面做下分析,分别说明一下diff算法的必要性(/src/core/instance/lifecycle.js中的mountComponent()方法)、执行方式(/src/core/vdom/patch.js中的patchVnode()方法)以及带来的高效性(/src/core/vdom/patch.js中的updateChildren()方法)。

1.diff算法的必要性分析,参考源码:src/core/instance/lifecycle.js中的mountComponent()方法,源码如下:

/*挂载组件*/
export function mountComponent (
  vm: Component,
  el: ?Element,
  hydrating?: boolean
): Component {
  vm.$el = el
  if (!vm.$options.render) {
    /*render函数不存在的时候创建一个空的VNode节点*/
    vm.$options.render = createEmptyVNode
    if (process.env.NODE_ENV !== 'production') {
      /* istanbul ignore if */
      if ((vm.$options.template && vm.$options.template.charAt(0) !== '#') ||
        vm.$options.el || el) {
        warn(
          'You are using the runtime-only build of Vue where the template ' +
          'compiler is not available. Either pre-compile the templates into ' +
          'render functions, or use the compiler-included build.',
          vm
        )
      } else {
        warn(
          'Failed to mount component: template or render function not defined.',
          vm
        )
      }
    }
  }
  /*触发beforeMount钩子*/
  callHook(vm, 'beforeMount')

  /*updateComponent作为Watcher对象的getter函数,用来依赖收集*/
  let updateComponent
  /* istanbul ignore if */
  if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
    updateComponent = () => {
      const name = vm._name
      const id = vm._uid
      const startTag = `vue-perf-start:${id}`
      const endTag = `vue-perf-end:${id}`

      mark(startTag)
      const vnode = vm._render()
      mark(endTag)
      measure(`${name} render`, startTag, endTag)

      mark(startTag)
      vm._update(vnode, hydrating)
      mark(endTag)
      measure(`${name} patch`, startTag, endTag)
    }
  } else {
    updateComponent = () => {
      vm._update(vm._render(), hydrating)
    }
  }

  /*这里对该vm注册一个Watcher实例,Watcher的getter为updateComponent函数,用于触发所有渲染所需要用到的数据的getter,进行依赖收集,该Watcher实例会存在所有渲染所需数据的闭包Dep中*/
  vm._watcher = new Watcher(vm, updateComponent, noop)
  hydrating = false

  // manually mounted instance, call mounted on self
  // mounted is called for render-created child components in its inserted hook
  if (vm.$vnode == null) {
    /*标志位,代表该组件已经挂载*/
    vm._isMounted = true
    /*调用mounted钩子*/
    callHook(vm, 'mounted')
  }
  return vm
}

从源码中我们可以得出mountComponent()是由用户$mount()时调用的,所以一个组件会调用一次$mount(),所以也会创建对应的watcher,但是一个组件中可能存在多个data的key的使用,这时候只存在一个watcher它如果想要明确知道具体的变化的key就需要使用diff算法进行一次新旧两个虚拟dom的比较就可以知道具体变化的地方了。

2.diff算法的执行方式,参考源码:/src/core/vdom/patch.js中的patchVnode()方法,源码如下:

  /*patch VNode节点*/
  function patchVnode (oldVnode, vnode, insertedVnodeQueue, removeOnly) {
    /*两个VNode节点相同则直接返回*/
    if (oldVnode === vnode) {
      return
    }
    // reuse element for static trees.
    // note we only do this if the vnode is cloned -
    // if the new node is not cloned it means the render functions have been
    // reset by the hot-reload-api and we need to do a proper re-render.
    /*
      如果新旧VNode都是静态的,同时它们的key相同(代表同一节点),
      并且新的VNode是clone或者是标记了once(标记v-once属性,只渲染一次),
      那么只需要替换elm以及componentInstance即可。
    */
    if (isTrue(vnode.isStatic) &&
        isTrue(oldVnode.isStatic) &&
        vnode.key === oldVnode.key &&
        (isTrue(vnode.isCloned) || isTrue(vnode.isOnce))) {
      vnode.elm = oldVnode.elm
      vnode.componentInstance = oldVnode.componentInstance
      return
    }
    let i
    const data = vnode.data
    if (isDef(data) && isDef(i = data.hook) && isDef(i = i.prepatch)) {
      /*i = data.hook.prepatch,如果存在的话,见"./create-component componentVNodeHooks"。*/
      i(oldVnode, vnode)
    }
    const elm = vnode.elm = oldVnode.elm
    const oldCh = oldVnode.children
    const ch = vnode.children
    if (isDef(data) && isPatchable(vnode)) {
      /*调用update回调以及update钩子*/
      for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode)
      if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode)
    }
    /*如果这个VNode节点没有text文本时*/
    if (isUndef(vnode.text)) {
      if (isDef(oldCh) && isDef(ch)) {
        /*新老节点均有children子节点,则对子节点进行diff操作,调用updateChildren*/
        if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly)
      } else if (isDef(ch)) {
        /*如果老节点没有子节点而新节点存在子节点,先清空elm的文本内容,然后为当前节点加入子节点*/
        if (isDef(oldVnode.text)) nodeOps.setTextContent(elm, '')
        addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue)
      } else if (isDef(oldCh)) {
        /*当新节点没有子节点而老节点有子节点的时候,则移除所有ele的子节点*/
        removeVnodes(elm, oldCh, 0, oldCh.length - 1)
      } else if (isDef(oldVnode.text)) {
        /*当新老节点都无子节点的时候,只是文本的替换,因为这个逻辑中新节点text不存在,所以直接去除ele的文本*/
        nodeOps.setTextContent(elm, '')
      }
    } else if (oldVnode.text !== vnode.text) {
      /*当新老节点text不一样时,直接替换这段文本*/
      nodeOps.setTextContent(elm, vnode.text)
    }
    /*调用postpatch钩子*/
    if (isDef(data)) {
      if (isDef(i = data.hook) && isDef(i = i.postpatch)) i(oldVnode, vnode)
    }
  }

我们知道patchVnode()是diff开始的地方,重点在新旧虚拟节点的比较部分,通过代码可以看出对比策略为:深度优先,同层比较,重点性能还是在updateChildren()方法中,也就是我们说的高效性,源码如下:

function updateChildren (parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) {
    let oldStartIdx = 0
    let newStartIdx = 0
    let oldEndIdx = oldCh.length - 1
    let oldStartVnode = oldCh[0]
    let oldEndVnode = oldCh[oldEndIdx]
    let newEndIdx = newCh.length - 1
    let newStartVnode = newCh[0]
    let newEndVnode = newCh[newEndIdx]
    let oldKeyToIdx, idxInOld, elmToMove, refElm

    // removeOnly is a special flag used only by <transition-group>
    // to ensure removed elements stay in correct relative positions
    // during leaving transitions
    const canMove = !removeOnly

    while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {
      if (isUndef(oldStartVnode)) {
        oldStartVnode = oldCh[++oldStartIdx] // Vnode has been moved left
      } else if (isUndef(oldEndVnode)) {
        oldEndVnode = oldCh[--oldEndIdx]
      } else if (sameVnode(oldStartVnode, newStartVnode)) {
        /*前四种情况其实是指定key的时候,判定为同一个VNode,则直接patchVnode即可,分别比较oldCh以及newCh的两头节点2*2=4种情况*/
        patchVnode(oldStartVnode, newStartVnode, insertedVnodeQueue)
        oldStartVnode = oldCh[++oldStartIdx]
        newStartVnode = newCh[++newStartIdx]
      } else if (sameVnode(oldEndVnode, newEndVnode)) {
        patchVnode(oldEndVnode, newEndVnode, insertedVnodeQueue)
        oldEndVnode = oldCh[--oldEndIdx]
        newEndVnode = newCh[--newEndIdx]
      } else if (sameVnode(oldStartVnode, newEndVnode)) { // Vnode moved right
        patchVnode(oldStartVnode, newEndVnode, insertedVnodeQueue)
        canMove && nodeOps.insertBefore(parentElm, oldStartVnode.elm, nodeOps.nextSibling(oldEndVnode.elm))
        oldStartVnode = oldCh[++oldStartIdx]
        newEndVnode = newCh[--newEndIdx]
      } else if (sameVnode(oldEndVnode, newStartVnode)) { // Vnode moved left
        patchVnode(oldEndVnode, newStartVnode, insertedVnodeQueue)
        canMove && nodeOps.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm)
        oldEndVnode = oldCh[--oldEndIdx]
        newStartVnode = newCh[++newStartIdx]
      } else {
        /*
          生成一个key与旧VNode的key对应的哈希表(只有第一次进来undefined的时候会生成,也为后面检测重复的key值做铺垫)
          比如childre是这样的 [{xx: xx, key: 'key0'}, {xx: xx, key: 'key1'}, {xx: xx, key: 'key2'}]  beginIdx = 0   endIdx = 2  
          结果生成{key0: 0, key1: 1, key2: 2}
        */
        if (isUndef(oldKeyToIdx)) oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx)
        /*如果newStartVnode新的VNode节点存在key并且这个key在oldVnode中能找到则返回这个节点的idxInOld(即第几个节点,下标)*/
        idxInOld = isDef(newStartVnode.key) ? oldKeyToIdx[newStartVnode.key] : null
        if (isUndef(idxInOld)) { // New element
          /*newStartVnode没有key或者是该key没有在老节点中找到则创建一个新的节点*/
          createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm)
          newStartVnode = newCh[++newStartIdx]
        } else {
          /*获取同key的老节点*/
          elmToMove = oldCh[idxInOld]
          /* istanbul ignore if */
          if (process.env.NODE_ENV !== 'production' && !elmToMove) {
            /*如果elmToMove不存在说明之前已经有新节点放入过这个key的Dom中,提示可能存在重复的key,确保v-for的时候item有唯一的key值*/
            warn(
              'It seems there are duplicate keys that is causing an update error. ' +
              'Make sure each v-for item has a unique key.'
            )
          }
          if (sameVnode(elmToMove, newStartVnode)) {
            /*如果新VNode与得到的有相同key的节点是同一个VNode则进行patchVnode*/
            patchVnode(elmToMove, newStartVnode, insertedVnodeQueue)
            /*因为已经patchVnode进去了,所以将这个老节点赋值undefined,之后如果还有新节点与该节点key相同可以检测出来提示已有重复的key*/
            oldCh[idxInOld] = undefined
            /*当有标识位canMove实可以直接插入oldStartVnode对应的真实Dom节点前面*/
            canMove && nodeOps.insertBefore(parentElm, newStartVnode.elm, oldStartVnode.elm)
            newStartVnode = newCh[++newStartIdx]
          } else {
            // same key but different element. treat as new element
            /*当新的VNode与找到的同样key的VNode不是sameVNode的时候(比如说tag不一样或者是有不一样type的input标签),创建一个新的节点*/
            createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm)
            newStartVnode = newCh[++newStartIdx]
          }
        }
      }
    }
    if (oldStartIdx > oldEndIdx) {
      /*全部比较完成以后,发现oldStartIdx > oldEndIdx的话,说明老节点已经遍历完了,新节点比老节点多,所以这时候多出来的新节点需要一个一个创建出来加入到真实Dom中*/
      refElm = isUndef(newCh[newEndIdx + 1]) ? null : newCh[newEndIdx + 1].elm
      addVnodes(parentElm, refElm, newCh, newStartIdx, newEndIdx, insertedVnodeQueue)
    } else if (newStartIdx > newEndIdx) {
      /*如果全部比较完成以后发现newStartIdx > newEndIdx,则说明新节点已经遍历完了,老节点多余新节点,这个时候需要将多余的老节点从真实Dom中移除*/
      removeVnodes(parentElm, oldCh, oldStartIdx, oldEndIdx)
    }
  }

从上可以看出,两个节点的对比方法包括假设首尾节点可能相同的4次比对尝试,如果都没有才会按照普通遍历,高效性在这里。

综上可以得出结论如下:

1.diff算法是虚拟dom的产物:通过新旧虚拟dom做对比(即diff),将变化更新在真是dom中,通过diff高效的对比,时间复杂度由O(n^3)降低到O(n)。

2.vue2中降低了watcher粒度,每个组件只有一个watcher与之对应,引入了diff算法可以精确找到发生变化的地方。

3.vue中diff执行的时刻是组件实例执行其更新函数时,它会对比上一次渲染结果oldVnode和新的渲染结果newVnode,这个过程就是我们说的打补丁patch。

4.diff算法整体策略:深度优先、同层比较;两个节点之间的比较会根据他们是否有子节点或者文本节点做不同操作;比较两组子节点是算法的重点部分,即首先假设首尾节点可能相同做4次尝试对比,如果没有找到相同的节点才会走遍历查找,查找结束后再分情况处理剩下的节点;借助key可以快速准确的找到相同节点,所以整个patch过程很高效。

以上为vue的diff算法,希望对你理解有所帮助,转载请标明出处,谢谢。

vue的key可以参考我的上一篇文章:剖析vue常见问题(三)之vue中key的作用和原理

react的diff算法和key可以参考文章:React的diff算法和key属性简介

猜你喜欢

转载自blog.csdn.net/wh_xmy/article/details/109613131