硬件工程师笔试机考复习考纲

硬件工程师考纲简略版

(未完待续)

1 概念
1.1 无源元件基础知识:电阻、电感

这里是引用

1.2 有源器件:二极管、三极管、mos管

1.2.1 二极管
二极管是用半导体材料(硅、硒、锗等)制成的一种电子器件。它具有单向导电性能, 即给二极管阳极和阴极加上正向电压时,二极管导通。 当给阳极和阴极加上反向电压时,二极管截止。 因此,二极管的导通和截止,则相当于开关的接通与断开。
二极管就是由一个PN结加上相应的电极引线及管壳封装而成的。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流。 当外加的反向电压高到一定程度时,PN结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。PN结的反向击穿有齐纳击穿和雪崩击穿之分。

1.2.2 三极管
三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件。其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。

1.2.3 Mos管 在绝缘栅型场效应管中,目前常用二氧化硅作金属铝栅极和半导体之间的绝缘层,成为金属-氧化物-半导体场效应晶体管,简称为MOSFET或MOS管。它有N沟道和P沟道两大类,每一类又有增强型和耗尽型两种。
MOS场效应晶体管具有很高的输入阻抗,在电路中便于直接耦合,容易制成规模大的集成电路。

1.3 时钟:概念、驱动、分发(待补充)

1.3.1 概念:

1.3.2 驱动:

1.3.3 分发:

*2 信号
2.1 波特率和比特率的定义(码元是什么?和字节什么关系?)

波特率:在电子通信领域,波特(Baud)即调制速率,指的是有效数据讯号调制载波的速率,即单位时间内载波调制状态变化的次数。波特率表示每秒钟传送的码元符号的个数,它是对符号传输速率的一种度量,它用单位时间内载波调制状态改变的次数来表示,1波特即指每秒传输1个符号。

比特率:比特率是指每秒传送的比特(bit)数。单位为bps(bit per second)也可表示为b/s,比特率越高,单位时间传送的数据量(位数)越大。计算机中的信息都用二进制的0和1来表示,其中每一个0或1被称作一个位,用小写b表示,即bit(位)。大写B表示byte即字节,1个字节=8个位,即1B=8b。表示文件的大小单位,一般都使用千字节(KB)来表示文件的大小。
区别:波特率有时候会同比特率混淆,实际上后者是对信息传输速率(传信率)的度量。比特率指每秒钟通过信道传输的信息量(也称为位传输速率),即每秒钟传送的二进制位数,用来表示有效数据的传输速率,用b/s 、bit/s、比特/秒,读作:比特每秒,常用的单位有每秒比特数bit/s(bps)、每秒千比特数(Kbps)或每秒兆比特数(Mbps)(此处K和M分别为1000和1000000,而不是涉及计算机存储器容量时的1024和1048576)。1波特即指每秒传输1个码元符号(通过不同的调制方式,可以在一个码元符号上负载多个bit位信息),1比特每秒是指每秒传输1比特(bit)。因此信息传输速率即比特率在数值上和波特率有这样的关系: 在这里插入图片描述
比特率和波特率都是衡量调制解调器传送速率的单位。在数据传输中数据信息是用二进制数“0”和“1”表示,每一个二进制数称为1比特。每秒钟通过信道传输的比特数称为比特率,用比特/秒表示,通常简写为bit/s。每秒钟通过信道传输的码元数称为波特率,也叫调制速率。只有在用两个值调制的方式下,比特率和波特率才一致。比如四相调制时,数据信号的每二个比特构成一个码元,共有4种取值:00、01、10和11,它们分别代表4种载波信号的相位变化,因此发送一个这样的码元就等于传送了两个比特的数据,波特率相当于比特率的一半。平常所说的传输速率300、600、1200和9600等,指的是波特率,表示每秒钟传输的二进制数字的个数为300、600、1200和9600。1字节=8位=8比特。码元:在数字通信中常常用时间间隔相同的符号来表示一位二进制数字.但是码元也可以表示多进制数字信号,二进制时是1比特,n进制时,是n/2比特。
码元:在数字通信中常常用时间间隔相同的符号来表示一个二进制数字,这样的时间间隔内的信号称为(二进制)码元。 而这个间隔被称为码元长度。值得注意的是当码元的离散状态有大于2个时(如M大于2个) 时,此时码元为M进制码元。码元是承载信息量的基本信号单位。
字节:字节(Byte)是计算机信息技术用于计量存储容量的一种计量单位,也表示一些计算机编程语言中的数据类型和语言字符。Byte是从0-255的无符号类型,所以不能表示负数。

2.2 信号如何采样

采样的定义:采样是一种对模拟信号时间轴上的离散化行为,通常,采样和量化是同时进行的。
很多控制系统先是模拟信号转换为数字信号,经过控制规则约束,然后数字信号转换为模拟信号,其中,模拟信号转换为数字信号就是对信号的采样过程.

2.3 差分信号、单端信号的区别。高速信号测试方法。眼图的测试。

差分信号、单端信号的区别。
一、基本区别
单端信号指的是用一个线传输的信号,一根线没参考点怎么会有信号呢?参考点就是地啊。也就是说,单端信号是在一跟导线上传输的与地之间的电平差。那么当你把信号从A点传递到B点的时候,有一个前提就是A点和B点的地电势应该差不多是一样的。差分信号指的是用两根线传输的信号,传输的是两根信号之间的电平差。当你把信号从A点传递到B点的时候,A点和B点的地电势可以一样也可以不一样,但是A点和B点的地电势差有一个范围,超过这个范围就会出问题了。

二、传输上的差别
单端信号的优点是,省钱、方便。

大部分的低频电平信号都是使用单端信号进行传输的。一个信号一根线,最后,把两边的地用一根线一连,完事。缺点在不同应用领域暴露的不一样,归结起来,最主要的一个方面就是,抗干扰能力差。

首先说最大的一个问题,地电势差以及地一致性。大家都认为地是0V,实际上,真正的应用中地是千奇百怪变化莫测的一个东西,我想我会专门写一些地方面的趣事。比如A点到B点之间,有那么一根线,用来连接两个系统之间的地,那么如果这根线上的电流很大时,两点间的地电势可能就不可忽略了,这样一个信号,从A的角度看起来是1V,从B的角度看起来可能只有0.8V了,这可不是一个什么好事情,这就是地电势差对单端信号的影响。接着说地一致性。实际上很多时候这个地上由于电流忽大忽小,布局结构远远近近,地上会产生一定的电压波动,这也会影响单端信号的质量。

差分信号在这一点有优势,由于两个信号都是相对于地的,当地电势发生变化时,两个信号同时上下浮动(当然是理想状态下),差分两根线之间的电压差却很少发生变化,这样信号质量不久高了吗?其次就是传输过程中的干扰,当一根导线穿过某个线圈时,且这根线圈上通着交流电时,这根导线上会产生感应电动势。实际上工业现场遇到的大部分。问题就是这么简单,可是你无法抗拒,如果是单端信号,产生多少,就是多少,这就是噪声你毫无办法。但是如果是差分信号,你就可以考虑拉,为啥呢,两根导线是平行传输的,每根导线上产生的感应电动势不是一样吗,两个一减,他不久没了吗。确实,同样的情况下,传输距离较长时,差分信号具有更强的驱动能力、更强的抗干扰能力,同样的,当你传输的信号会对其他设备有干扰时,差分信号也比单端信号产生的信号相对小,也就是常说的EMI特性。

2.3.2 高速信号测试方法:

1、波形测试
波形测试是信号完整性测试中最常用的手段,一般是使用示波器进行,主要测试波形幅度、边沿和毛刺等,通过测试波形的参数,可以看出幅度、边沿时间等是否满足器件接口电平的要求,有没有存在信号毛刺等。

2、眼图测试
眼图测试是常用的测试手段,特别是对于有规范要求的接口,比如USB、Ethernet、SATA、HDMI,还有光接口等。这些标准接口信号的眼图测试,主要是用带MASK(模板)的示波器,包括通用示波器,采样示波器或者信号分析仪,这些示波器内置的时钟提取功能,可以显示眼图,对于没有MASK的示波器,可以使用外接时钟进行触发。

3、抖动测试
抖动测试现在越来越受到重视,因为专用的抖动测试仪器,比如TIA(时间间隔分析仪)、SIA3000,价格非常昂贵,使用得比较少。使用得最多是示波器加上软件处理,如keysight的EZJIT,TEK的DPOJitter软件。通过软件处理,分离出各个分量,比如RJ和DJ,以及DJ中的各个分量。对于这种测试,选择的示波器,长存储和高速采样是必要条件,比如2M以上的存储器,20GSa/s的采样速率。

4、TDR测试 TDR测试目前主要使用于PCB(印制电路板)信号线、以及器件阻抗的测试,比如单端信号线,差分信号线,连接器线缆等。
这种测试有一个要求,就是和实际应用的条件相结合,比如实际该信号线的信号上升沿在300ps左右,那么TDR的输出脉冲信号的上升沿也要相应设置在300ps附近,而不使用30ps左右的上升沿,否则测试结果可能和实际应用有比较大的差别。
影响TDR测试精度有很多的原因,主要有反射、校准、读数选择等,反射会导致较短的PCB信号线测试值出现严重偏差,特别是在使用TIP(探针)去测试的情况下更为明显,因为TIP和信号线接触点会导致很大的阻抗不连续,导致反射发生,并导致附近三、四英寸左右范围的PCB信号线的阻抗曲线起伏。

5、时序测试 现在器件的工作速率越来越快,时序容限越来越小,时序问题导致产品不稳定是非常常见的,因此时序测试是非常必要的。
测试时序通常需要多通道的示波器和多个探头,示波器的逻辑触发或者码型和状态触发功能,对于快速捕获到需要的波形,很有帮助,不过多个探头在实际操作中,并不容易,又要拿探头,又要操作示波器,那个时候感觉有孙悟空的三头六臂就方便多了。
逻辑分析仪用做时序测试并不多,因为它主要作用是分析码型,也就是分析信号线上跑的是什么码,和代码联系在一起,可以分析是哪些指令或者数据。
在对于要求不高的情况下,可以用它来测试,它相对示波器来说,优势就是通道数多,但是它的劣势是探头连接困难,除非设计的时候就已经考虑了连接问题,否则飞线就是唯一的选择,如果信号线在PCB的内层,几乎很难做到。

6、频谱测试 对于产品的开发前期,这种测试应用相对比较少,但是对于后期的系统测试,比如EMC测试,很多产品都需要测试。
通过该测试发现某些频点超标,然后可以使用近场扫描仪(其中关键的仪器是频谱仪),例如EMCSCANER,来分析板卡上面具体哪一部分的频谱比较高,从而找出超标的根源所在。
不过这些设备相对都比较昂贵,中小公司拥有的不多,因此通常情况下都是在设计时仔细做好匹配和屏蔽,避免后面测试时发现信号频谱超标,因为后期发现了问题,很多情况下是很难定位的。

7、频域阻抗测试
现在很多标准接口,比如E1/T1等,为了避免有太多的能量反射,都要求比较好地匹配,另外在射频或者微波,相互对接,对阻抗通常都有要求。
这些情况下,都需要进行频域的阻抗测试。阻抗测试通常使用网络分析仪,单端端口相对简单,对于差分输入的端口,可以使用Balun进行差分和单端转换。

8、传输线损耗测试
传输线损耗测试,对于长的PCB走线,或者电缆等,在传输距离比较远,或者传输信号速率非常高的情况下,还有频域的串扰等,都可以使用网络分析仪来测试。
同样的,对于PCB差分信号或者双绞线,也可是使用Balun进行差分到单端转换,或者使用4端口网络分析来测试。多端口网络分析仪的校准,使用电子校准件可以大大提高校准的效率。

9、误码测试
误码测试实际上是系统测试,利用误码仪,甚至是一些软件都可做,比如可以通过两台电脑,使用软件,测试连接两台电脑间的网络误码情况。误码测试可以对数据的每一位都进行测试,这是它的优点,相比之下示波器只是部分时间进行采样,很多时间都在等待,因此漏过了很多细节。低误码率的设备的误码测试很耗费时间,有的测试时间是一整天,甚至是数天。

眼图的测试:
眼图测试是常用的测试手段,特别是对于有规范要求的接口,比如USB、Ethernet、SATA、HDMI,还有光接口等。这些标准接口信号的眼图测试,主要是用带MASK(模板)的示波器,包括通用示波器,采样示波器或者信号分析仪,这些示波器内置的时钟提取功能,可以显示眼图,对于没有MASK的示波器,可以使用外接时钟进行触发。
使用眼图测试功能,需要注意测试波形的数量,特别是对于判断接口眼图是否符合规范时,数量过少,波形的抖动比较小,也许有一下违规的情况,比如波形进入MASK的某部部分,就可能采集不到,出现误判为通过,数量太多,会导致整个测试时间过长,效率不高,通常情况下,测试波形数量不少于2000,在3000左右为适宜。
目前有一些仪器,利用分析软件,可以对眼图中的违规详细情况进行查看,比如在MASK中落入了一些采样点,在以前是不知道哪些情况下落入的,因为所有的采样点是累加进去的,总的效果看起来就象是长余晖显示。
而新的仪器,利用了其长存储的优势,将波形采集进来后进行处理显示,因此波形的每一个细节都可以保留,因此它可以查看波形的违规情况,比如波形是000010还是101010,这个功能可以帮助硬件工程师查找问题的根源所在。

2.4 串行和并行传输定义、传输方式、转换方式,优缺点。

定义:
串行传输:串行传输即串行通信,是指使用一条数据线,将数据一位一位地依次传输,每一位数据占据一个固定的时间长度。其只需要少数几条线就可以在系统间交换信息,特别适用于计算机与计算机、计算机与外设之间的远距离通信。
并行传输:并行传输指的是数据以成组的方式,在多条并行信道上同时进行传输,是在传输中有多个数据位同时在设备之间进行的传输。
在这里插入图片描述

区别:串行传输的速度比并行传输的速度要慢得多,但费用低.并行传输适用距离短,而串行传输适用远距离传输.并行传输即同步通信较复杂,双方时钟的允许误差较小;串行传输即异步通信简单,双方时钟可允许一定误差。并行传输可用于点对多点;串行传输信只适用于点对点。

串行传输和并行传输的优缺点
1、串行传输
优点:使用的数据线少,在远距离通信中可以节约通信成本。
缺点:因为每次只能传输一位数据,所以传输速度比较低。
2、并行传输
优点:因为可以多位数据一起传输,所以传输速度很快。
缺点:内存有多少位,就要用多少数据线,所以需要大量的数据线,成本很高。
使用场合
1、串行传输:
特别适合于远距离传输.对于那些与计算机相距不远的人-机交换设备和串行存储的外部设备如终端、打印机、逻辑分析仪、磁盘等,采用串行方式交换数据也很普遍.在实时控制和管理方面,采用多台微机处理机组成分级分布控制系统中,各 CPU 之间的通信一般都是串行方式.所以串行接口是微机应用系统常用的接口。
2、并行传输:
广泛应用于微机系统,是微机系统中最基本的信息交换方法,
例如:微机与并行接口打印机、磁盘驱动器,
例如:系统板上各部件之间,接口电路板上各部件之间。

3 电路基础
叠加定理、戴维南、基尔霍夫、分析方法(电路电路、动态电路等)

电路的叠加定理(Superposition theorem)指出:对于一个线性系统,一个含多个独立源的双边线性电路的任何支路的响应(电压或电流),等于每个独立源单独作用时的响应的代数和,此时所有其他独立源被替换成他们各自的阻抗。
为了确定每个独立源的作用,所有的其他电源的必须“关闭”(置零):在所有其他独立电压源处用短路代替(从而消除电势差,即令V = 0;理想电压源的内部阻抗为零(短路))。在所有其他独立电流源处用开路代替 (从而消除电流,即令I = 0;理想的电流源的内部阻抗为无穷大(开路))。依次对每个电源进行以上步骤,然后将所得的响应相加以确定电路的真实操作。所得到的电路操作是不同电压源和电流源的叠加。
叠加定理在电路分析中非常重要。它可以用来将任何电路转换为诺顿等效电路或戴维南等效电路。
该定理适用于由独立源、受控源、无源器件(电阻器、电感、电容)和变压器组成的线性网络(时变或静态)。
应该注意的另一点是,叠加仅适用于电压和电流,而不适用于电功率。换句话说,其他每个电源单独作用的功率之和并不是真正消耗的功率。要计算电功率,我们应该先用叠加定理得到各线性元件的电压和电流,然后计算出倍增的电压和电流的总和。

戴维南定理(Thevenin’s theorem)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由于早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立电压源、独立电流源及电阻的线性网络的两端,就其外部型态而言,在电学上可以用一个独立电压源V和一个松弛二端网络的串联电阻组合来等效。在单频交流系统中,此定理不仅适用于电阻,也适用于广义的阻抗。
此定理陈述出一个具有电压源及电阻的电路可以被转换成戴维南等效电路,这是用于电路分析的简化技巧。戴维南等效电路对于电源供应器及电池(里面包含一个代表内阻抗的电阻及一个代表电动势的电压源)来说是一个很好的等效模型,此电路包含了一个理想的电压源串联一个理想的电阻。

4 数电
4.1 进制转换
4.2 逻辑运算(与或非、符号、作用、简单的化简。例如卡诺图进行计算)
4.3 门电路:二极管、cmos、TTL
4.4 组合逻辑电路(比较浅显,考察常用的类型和概念。例如译码器、竞争、冒险)
4.5 存储相关的知识(ROM\RAM; 区别概念:sram dram)
4.6 触发器 分频电路

5 模电
5.1 常用半导体器件:二极管、三极管、场效应管
5.2 基本放大电路:共射、共基
5.3 放大电路的反馈问题
5.4 基本的运算放大电路(积分运算、比例运算、有源滤波)

6 微机原理
6.1 计算机组成、CPU结构、8086精简指令集和复杂指令集概念区别
6.2 基础的汇编语言(很简单、概念性的)
6.3 存储介质
6.4 I/O 总线
6.5 CPU中断的概念

7 示波器
7.1 示波器参数指标(带宽、采样频率)
7.2 触发模式
7.3 测试方法

8 电源
电源噪声、纹波、开关电源、LDO概念 用途 区别 缓起

9 PCB布线
基本常识,高速信号布线要注意什么?

1.多层布线

合理选择层数能大幅度降低印版那个中间层尺寸,能充分利用中间层来设置屏蔽,能更好的实现就近接地,能有效的降低寄生电感,能有效缩短信号的传输长度,能最大限度的降低信号间的交叉干扰。在这里插入图片描述

2.引线弯折越少越好

高速电路器件管脚间的引线弯折越少越好。高速电路布线的引线最好采用全直线,需要弯折,可用45°折线或圆弧线。

3.引线越短越好
高速电路器件管脚间的引线越短越好。引线越长,带来的分布电感和分布电容值越大,对系统的高频信号通过产生很多的影响,同时也会改变电路的特性阻抗。

4.引线层间的交替越少越好
高速电路器件管脚间的引线层间交替越少越好。所谓“引线的层间交替越少越好”,是指元件连接过程中所用的过孔越少越好。据侧,一个过孔可带来约0.5pF的分布电容,导致电路的延迟明显增加,减少过孔数目能显著提高速度。

5.注意平行交叉干扰

高速电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号的反面布置大面积“地”来大幅度减少干扰。同一层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为相互垂直。

6.底线包围
底线包围,也称地线隔离,对特别重要的信号线或局部单元实施地线包围的措施。有些信号对要求比较严格,要保证信号不受到干扰,比如时钟信号、告诉模拟信号、微小模拟信号等。为了保护这些信号尽量少受到周围信号线的串扰,可在这些信号走线的外围加上保护的地线,将要保护的信号线加在中间。

7.走线避免成环

各类信号走线不能形成环路,地线也不能形成电流环路。如果产生环路电路,将在系统中产生很大的干扰。

8.布置去耦电容

每个集成电路块的附近应该设置一个或者几个高频去耦电容。为集成片的瞬变电流提供就进的高频通道,使电流不至于通过环路面积较大的供电线路,从而大大减少了向外的辐射噪声。同时由于各集成片拥有自己的高频通道,相互之间没有公共阻抗,抑制了其阻抗耦合。在这里插入图片描述

9.使用高频扼流环节

模拟地线、数字地线等接往公共地线时要用高频扼流环节。在实际装配高频扼流环节时用的网上是中心穿孔有导线的高频铁氧体磁珠。

10.避免分支和树桩

告诉信号布线应尽量避免分支或树桩。树桩对阻抗有很大影响,可以导致信号的反射和过冲,所以我们通常在设计时应避免树桩和分支。采用菊花链的方式,将对信号的影响降低。

11.信号线尽量走在内层

高频信号线走在表层容易产生较大电磁辐射,也容易受到外界电磁辐射或者因此的干扰。将高频信号先布线在电源和地线之间,通过电源还底层对电磁波的吸收,所产生的辐射将减少很多。

10 网络协议
七层模型和四层模型
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/AlbertDS/article/details/108445542