二叉树(上)——“数据结构与算法”

各位CSDN的uu们好呀,好久没有更新我的数据结构与算法专栏啦,今天,小雅兰继续来更新二叉树的内容,下面,让我们进入链式二叉树的世界吧!!!


二叉树链式结构的实现 


二叉树链式结构的实现

普通的二叉树的增删查改是没有价值的!!!

只有搜索二叉树的增删查改才有价值。

那么,为什么要学习普通二叉树,而不是一上来就学搜索二叉树呢?

因为,一上来就学习搜索二叉树实在是太难了!!!

而且,学习普通二叉树,主要是学习它的控制结构(递归),为后续学习打基础。

 二叉树是:

1. 空树

2. 非空:根节点,根节点的左子树、根节点的右子树组成的。

 从概念中可以看出,二叉树定义是递归式的。


二叉树的遍历

前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉 树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历 是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

按照规则,二叉树的遍历有:

前序/中序/后序的递归结构遍历:

  • 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
  • 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
  • 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

前序

1  2  3  4  5  6 

中序

3  2  1  5  4  6 

后序

 3  2  5  6  4  1

 既然已经清楚了前序中序后序的物理过程,下面,就可以写代码啦!!!

前序

void PrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	printf("%d ", root->data);
	PrevOrder(root->left);
	PrevOrder(root->right);
}

 

  

中序

void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	InOrder(root->left);
	printf("%d ", root->data);
	InOrder(root->right);
}

 

后序

void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->data);
}

 

 

二叉树结点个数

 

不能这么写!!!

因为这是递归调用,不是循环,在循环里面就可以不断++size,就可以

但是这是在递归里面,在不同的栈帧里面,每个栈帧里面都有一个size,这样显然有问题

这样写也不行!!!

这个static定义的size就不在栈帧里面了,而是在静态区里面。 

那么,该如何来验证这个问题呢?

//二叉树结点个数
void BTreeSize(BTNode* root)
{
	static int size = 0;
	printf("%p\n", &size);
	if (root == NULL)
	{
		return;
	}
	else
	{
		++size;
	}
	BTreeSize(root->left);
	BTreeSize(root->right);
}

会发现:每次打印出的size的地址都一样!!! 

//二叉树结点个数
void BTreeSize(BTNode* root)
{
	static int size = 0;
	printf("%p,%d\n", &size,size);
	if (root == NULL)
	{
		return;
	}
	else
	{
		++size;
	}
	BTreeSize(root->left);
	BTreeSize(root->right);
}

会发现:并不是每次都把size置为0,size是发生变化的!!! 

这样写表面上确确实实行得通,但是只要细细思索,会发现有大坑!!!

 

为什么结果会这样呢?

因为:size没办法置0!!!

那么,正确的写法该怎么写呢???

把size定义成全局变量!!!

//二叉树结点个数
int size = 0;//全局变量
void BTreeSize(BTNode* root)
{
	if (root == NULL)
	{
		return;
	}
	else
	{
		++size;
	}
	BTreeSize(root->left);
	BTreeSize(root->right);
}
int main()
{
    BTreeSize(root);
	printf("BTreeSize:%d\n", size);

	size = 0;
	BTreeSize(root);
	printf("BTreeSize:%d\n", size);

	size = 0;
	BTreeSize(root);
	printf("BTreeSize:%d\n", size);
	return 0;
}

这个方法是遍历记数法 

求解这个问题还有另一种方法。

 

可以采用分治的方法!!!

//二叉树结点个数
int BTreeSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	else
	{
		return BTreeSize(root->left) + BTreeSize(root->right) + 1;
	}
}

另一种写法:

//二叉树结点个数
int BTreeSize(BTNode* root)
{
	return root == NULL ? 0 : BTreeSize(root->left) + BTreeSize(root->right) + 1;
}

 

求叶子结点的个数

//求叶子结点的个数
int BTreeleafSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	if (root->left == NULL && root->right == NULL)
	{
		return 1;
	}
	return BTreeleafSize(root->left) + BTreeleafSize(root->right);
}


目前整个的源代码:

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
typedef int BTDataType;
typedef struct BinaryTreeNode
{
    BTDataType data;
    struct BinaryTreeNode* left;
    struct BinaryTreeNode* right;
}BTNode;

BTNode* BuyNode(BTDataType x)
{
    BTNode* node = (BTNode*)malloc(sizeof(BTNode));
    if (node == NULL)
    {
        perror("malloc fail");
        return NULL;
    }
    node->data = x;
    node->left = NULL;
    node->right = NULL;
    return node;
}

BTNode* CreatBinaryTree()
{
    BTNode* node1 = BuyNode(1);
    BTNode* node2 = BuyNode(2);
    BTNode* node3 = BuyNode(3);
    BTNode* node4 = BuyNode(4);
    BTNode* node5 = BuyNode(5);
    BTNode* node6 = BuyNode(6);

    node1->left = node2;
    node1->right = node4;
    node2->left = node3;
    node4->left = node5;
    node4->right = node6;
    return node1;
}

//前序
void PrevOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }
    printf("%d ", root->data);
    PrevOrder(root->left);
    PrevOrder(root->right);
}

//中序
void InOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }
    InOrder(root->left);
    printf("%d ", root->data);
    InOrder(root->right);
}

//后序
void PostOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }
    PostOrder(root->left);
    PostOrder(root->right);
    printf("%d ", root->data);
}

 

二叉树结点个数
//int size = 0;//全局变量
//int BTreeSize(BTNode* root)
//{
//    if (root == NULL)
//    {
//        return;
//    }
//    else
//    {
//        ++size;
//    }
//    BTreeSize(root->left);
//    BTreeSize(root->right);
//}


二叉树结点个数
//int BTreeSize(BTNode* root)
//{
//    if (root == NULL)
//    {
//        return 0;
//    }
//    else
//    {
//        return BTreeSize(root->left) + BTreeSize(root->right) + 1;
//    }
//}


//二叉树结点个数
int BTreeSize(BTNode* root)
{
    return root == NULL ? 0 : BTreeSize(root->left) + BTreeSize(root->right) + 1;
}


//求叶子结点的个数
int BTreeleafSize(BTNode* root)
{
    if (root == NULL)
    {
        return 0;
    }
    if (root->left == NULL && root->right == NULL)
    {
        return 1;
    }
    return BTreeleafSize(root->left) + BTreeleafSize(root->right);
}

int main()
{
    BTNode* root = CreatBinaryTree();
    PrevOrder(root);
    printf("\n");

    InOrder(root);
    printf("\n");

    PostOrder(root);
    printf("\n");

    /*BTreeSize(root);
    printf("BTreeSize:%d\n", size);

    size = 0;
    BTreeSize(root);
    printf("BTreeSize:%d\n", size);

    size = 0;
    BTreeSize(root);
    printf("BTreeSize:%d\n", size);*/

    printf("BTreeSize:%d\n",BTreeSize(root));

    return 0;
}


好啦,这只是二叉树的刚开始的部分知识点,接下来,小雅兰会继续更新数据结构与算法专栏啦,继续加油!!!

 

猜你喜欢

转载自blog.csdn.net/weixin_74957752/article/details/131689017