MNIST手写数字识别 —— 基于Mindspore快速构建感知机实现十分类

基于深度学习框架快速构建感知机实现手写数字二分类 

        不依赖数学知识,使用MindSpore深度学习框架快速实现模型结构定义、损失函数定义、梯度下降的方法。

        上一节从零开始实现了感知机的模型结构、定义了损失函数和评价函数,并且手动推导了梯度下降的公式,最终经过3000个epoch的训练,使得感知机模型在手写数字0和1的二分类任务上达到了0.9以上的准确率。

        这个从零开始实现整个机器学习过程的方式是比较费劲的,特别是在手动推导梯度下降公式这一块,需要一定的数学知识。如果更换另一个损失函数,那又得再重新推导一遍新的梯度下降公式,这对调模型来说是费力的事情。

        好在当今已经有很多的深度学习框架,它们已经友好地封装了模型结构定义、损失函数定义、梯度下降实现等过程,只需要进行一些简单的函数调用,就可以实现完成的机器学习训练过程,无需关注底层的梯度下降是如何实现的,极大地提高了模型开发的效率。

下面,用MindSpore框架来快速实现感知机模型,对手写数字进行二分类。

1.加载数据集 

由于上一节已经定义了load_data_zeros_ones函数,所以直接进行调用即可 

import os
import sys

import moxing as mox

datasets_dir = '../datasets'
if not os.path.exists(datasets_dir):
    os.makedirs(datasets_dir)
    
if not os.path.exists(os.path.join(datasets_dir, 'MNIST_Data.zip')):
    mox.file.copy('obs://modelarts-labs-bj4-v2/course/hwc_edu/python_module_framework/datasets/mindspore_data/MNIST_Data.zip', 
                  os.path.join(datasets_dir, 'MNIST_Data.zip'))
    os.system('cd %s; unzip MNIST_Data.zip' % (datasets_dir))
    
sys.path.insert(0, os.path.join(os.getcwd(), '../datasets/MNIST_Data'))
from load_data_zeros_ones import load_data_zeros_ones

train_images, train_labels, test_images, test_labels = load_data_zeros_ones(datasets_dir)

数字0,训练集规模: 5923 ,测试集规模: 980

数字1,训练集规模: 6742 ,测试集规模: 1135

 load_data_zeros_ones函数返回的数据格式是np.ndarray格式,但是在MindSpore中要求的格式是Tensor格式,因此要执行下面的代码进行数据格式转换

import mindspore
from mindspore import Tensor

# 重新调整数据集形状
train_images = train_images.reshape((-1,1,28,28))
train_labels = train_labels.flatten()

test_images = test_images.reshape((-1,1,28,28))
test_labels = test_labels.flatten()

train_size = len(train_labels)
test_size = len(test_labels)

# 转变为mindspore支持的tensor格式的数据
train_images =  Tensor(train_images, mindspore.float32)
train_labels = Tensor(train_labels, mindspore.int32)
test_images = Tensor(test_images, mindspore.float32)
test_labels = Tensor(test_labels, mindspore.int32)

 2.定义网络结构和评价函数

        使用 MindSpore 实现感知机模型非常简单,只需要调用nn.Dense定义一个全连接层,再加上一个Sigmoid单元即可,并且nn.Dense会对权值w和阈值偏置b自动进行初始化,代码如下:

import mindspore.nn as nn
import mindspore.ops as ops
from mindspore.common.initializer import Normal

class Network(nn.Cell):
    def __init__(self, num_of_weights):
        super(Network, self).__init__()
        self.fc = nn.Dense(in_channels=num_of_weights, out_channels=2)  # 定义一个全连接层
        self.nonlinearity = nn.Sigmoid()
        self.flatten = nn.Flatten()
    
    def construct(self, x):  # 加权求和单元和非线性函数单元通过定义计算过程来实现
        x = self.flatten(x)
        z = self.fc(x)
        pred_y = self.nonlinearity(z)
        return pred_y

# 评价函数
def evaluate(pred_y, true_y): 
    pred_labels = ops.Argmax(output_type=mindspore.int32)(pred_y)
    correct_num = (pred_labels == true_y).asnumpy().sum().item()
    return correct_num

 3.定义交叉熵损失函数和优化器

        要训练神经网络模型,需要定义损失函数和优化器。

        MindSpore支持的损失函数有SoftmaxCrossEntropyWithLogits、L1Loss、MSELoss等。这里使用交叉熵损失函数SoftmaxCrossEntropyWithLogits。

        MindSpore支持的优化器有Adam、AdamWeightDecay、SGD、Momentum等。这里使用Momentum优化器为例。

# 损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')

# 创建网络
network = Network(28*28)  
lr = 0.01
momentum = 0.9

# 优化器
net_opt = nn.Momentum(network.trainable_params(), lr, momentum)

4.实现训练函数

def train(network, max_epochs= 50):
    net = WithLossCell(network, net_loss)
    train_network = TrainOneStepCell(net, net_opt)
    train_network.set_train()
    for epoch in range(1, max_epochs + 1):
        train_correct_num = 0.0
        test_correct_num = 0.0
        output = train_network(train_images,train_labels)
        pred_train_labels = network.construct(train_images)  # 前向传播
        train_correct_num = evaluate(pred_train_labels, train_labels)
        train_acc = float(train_correct_num) / train_size

        if (epoch == 1) or (epoch % 10 == 0):
            pred_test_labels = network.construct(test_images)
            test_correct_num = evaluate(pred_test_labels, test_labels)
            test_acc = test_correct_num / test_size
            print("epoch: {0}/{1}, train_losses: {2:.4f}, tain_acc: {3:.4f}, test_acc: {4:.4f}" \
                  .format(epoch, max_epochs, output.asnumpy(), train_acc, test_acc, cflush=True))

5.配置运行信息

        在正式训练前,通过context.set_context来配置运行需要的信息,譬如运行模式、后端信息、硬件等信息。

from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")  # device_target 可选 CPU/GPU, 当选择GPU时mindspore规格也需要切换到GPU

 6.开始训练

import time
from mindspore.nn import WithLossCell, TrainOneStepCell

max_epochs = 50
start_time = time.time()
print("*"*10 + "开始训练" + "*"*10)
train(network, max_epochs= max_epochs)
print("*"*10 + "训练完成" + "*"*10)
cost_time = round(time.time() - start_time, 1)
print("训练总耗时: %.1f s" % cost_time)
**********开始训练**********

epoch: 1/50, train_losses: 0.7050, tain_acc: 0.3516, test_acc: 0.3759

epoch: 10/50, train_losses: 0.5338, tain_acc: 0.9901, test_acc: 0.9943

epoch: 20/50, train_losses: 0.3990, tain_acc: 0.9949, test_acc: 0.9981

epoch: 30/50, train_losses: 0.3593, tain_acc: 0.9935, test_acc: 0.9972

epoch: 40/50, train_losses: 0.3468, tain_acc: 0.9934, test_acc: 0.9967

epoch: 50/50, train_losses: 0.3410, tain_acc: 0.9938, test_acc: 0.9967

**********训练完成**********

训练总耗时: 9.1 s

        从上面的结果可以看到,使用 MindSpore 实现的感知机模型,使用20秒的时间,训练了50个epoch之后就达到了0.9967的准确率,相比上一节的实现,训练又快又好,这说明使用 MindSpore 来进行模型的开发,不仅开发效率更高,实现的结果也更优,这就是使用深度学习框架MindSpore带来的优势。 

从二分类扩展到十分类 

        使用深度学习框架MindSpore,利用其友好的封装模块,模型结构定义、损失函数定义、梯度下降实现等过程,只需简单地函数调用,就能实现模型训练,极大地提高了模型开发的效率。

 1.加载数据集

 加载完整的、十个类别的数据集

import os
import numpy as np

import moxing as mox
import mindspore.dataset as ds

datasets_dir = '../datasets'
if not os.path.exists(datasets_dir):
    os.makedirs(datasets_dir)
    
if not os.path.exists(os.path.join(datasets_dir, 'MNIST_Data.zip')):
    mox.file.copy('obs://modelarts-labs-bj4-v2/course/hwc_edu/python_module_framework/datasets/mindspore_data/MNIST_Data.zip', 
                  os.path.join(datasets_dir, 'MNIST_Data.zip'))
    os.system('cd %s; unzip MNIST_Data.zip' % (datasets_dir))
    
# 读取完整训练样本和测试样本
mnist_ds_train = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/train"))
mnist_ds_test = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/test"))
train_len = mnist_ds_train.get_dataset_size()
test_len = mnist_ds_test.get_dataset_size()
print('训练集规模:', train_len, ',测试集规模:', test_len)

训练集规模: 60000 ,测试集规模: 10000

 查看10个样本

from PIL import Image
items_train = mnist_ds_train.create_dict_iterator(output_numpy=True)

train_data = np.array([i for i in items_train])
images_train = np.array([i["image"] for i in train_data])
labels_train = np.array([i["label"] for i in train_data])

batch_size = 10  # 查看10个样本
batch_label = [lab for lab in labels_train[:10]]
print(batch_label)
batch_img = images_train[0].reshape(28, 28)
for i in range(1, batch_size):
    batch_img = np.hstack((batch_img, images_train[i].reshape(28, 28)))  # 将一批图片水平拼接起来,方便下一步进行显示
Image.fromarray(batch_img)
[0, 2, 2, 7, 8, 4, 9, 1, 8, 8]

 2.处理数据集

        数据集对于训练非常重要,好的数据集可以有效提高训练精度和效率,在使用数据集前,通常会对数据集进行一些处理。

         进行数据增强操作

import mindspore.dataset.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype

num_parallel_workers = 1
resize_height, resize_width = 28, 28

# according to the parameters, generate the corresponding data enhancement method
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)  # 对图像数据像素进行缩放
type_cast_op = C.TypeCast(mstype.int32)  # 将数据类型转化为int32。
hwc2chw_op = CV.HWC2CHW()  # 对图像数据张量进行变换,张量形式由高x宽x通道(HWC)变为通道x高x宽(CHW),方便进行数据训练。

# using map to apply operations to a dataset
mnist_ds_train = mnist_ds_train.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds_train = mnist_ds_train.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds_train = mnist_ds_train.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)

buffer_size = 10000
mnist_ds_train = mnist_ds_train.shuffle(buffer_size=buffer_size)  # 打乱训练集的顺序

        进行数据归一化

        对图像数据进行标准化、归一化操作,使得每个像素的数值大小在(0,1)范围中,可以提升训练效率。 

rescale = 1.0 / 255.0
shift = 0.0

rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081

rescale_op = CV.Rescale(rescale, shift) 
mnist_ds_train = mnist_ds_train.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)

rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
mnist_ds_train = mnist_ds_train.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)

mnist_ds_train = mnist_ds_train.batch(60000, drop_remainder=True)  # 对数据集进行分批,此处加载完整的训练集

3.封装成函数

到此,完成了训练数据的准备工作,可以将以上操作封装成load_data_all函数和process_dataset函数,以便后面再次用到。

        定义数据处理操作

   定义一个函数process_dataset来进行数据增强和处理操作:

  • 定义进行数据增强和处理所需要的一些参数。

  • 根据参数,生成对应的数据增强操作。

  • 使用map映射函数,将数据操作应用到数据集。

  • 对生成的数据集进行处理。

%%writefile ../datasets/MNIST_Data/process_dataset.py
def process_dataset(mnist_ds, batch_size=32, resize= 28, repeat_size=1,
                   num_parallel_workers=1):
    """
    process_dataset for train or test

    Args:
        mnist_ds (str): MnistData path
        batch_size (int): The number of data records in each group
        resize (int): Scale image data pixels
        repeat_size (int): The number of replicated data records
        num_parallel_workers (int): The number of parallel workers
    """

    import mindspore.dataset.vision.c_transforms as CV
    import mindspore.dataset.transforms.c_transforms as C
    from mindspore.dataset.vision import Inter
    from mindspore import dtype as mstype
    
    # define some parameters needed for data enhancement and rough justification
    resize_height, resize_width = resize, resize
    rescale = 1.0 / 255.0
    shift = 0.0
    rescale_nml = 1 / 0.3081
    shift_nml = -1 * 0.1307 / 0.3081

    # according to the parameters, generate the corresponding data enhancement method
    resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
    rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
    rescale_op = CV.Rescale(rescale, shift)
    hwc2chw_op = CV.HWC2CHW()
    type_cast_op = C.TypeCast(mstype.int32)
    c_trans = [resize_op, rescale_op, rescale_nml_op, hwc2chw_op]

    # using map to apply operations to a dataset
    mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(operations=c_trans, input_columns="image", num_parallel_workers=num_parallel_workers)

    # process the generated dataset
    buffer_size = 10000
    mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
    mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
    mnist_ds = mnist_ds.repeat(repeat_size)

    return mnist_ds

         定义数据加载函数

%%writefile ../datasets/MNIST_Data/load_data_all.py
def load_data_all(datasets_dir):
    import os
    if not os.path.exists(datasets_dir):
        os.makedirs(datasets_dir)
    import moxing as mox
    if not os.path.exists(os.path.join(datasets_dir, 'MNIST_Data.zip')):
        mox.file.copy('obs://modelarts-labs-bj4-v2/course/hwc_edu/python_module_framework/datasets/mindspore_data/MNIST_Data.zip', 
                      os.path.join(datasets_dir, 'MNIST_Data.zip'))
        os.system('cd %s; unzip MNIST_Data.zip' % (datasets_dir))
    
    # 读取完整训练样本和测试样本
    import mindspore.dataset as ds
    datasets_dir = '../datasets'
    mnist_ds_train = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/train"))
    mnist_ds_test = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/test"))
    train_len = mnist_ds_train.get_dataset_size()
    test_len = mnist_ds_test.get_dataset_size()
    print('训练集规模:', train_len, ',测试集规模:', test_len)
    
    return mnist_ds_train, mnist_ds_test, train_len, test_len

4.加载处理后的测试集

import os, sys 
sys.path.insert(0, os.path.join(os.getcwd(), '../datasets/MNIST_Data'))
from process_dataset import process_dataset
mnist_ds_test = process_dataset(mnist_ds_test, batch_size= 10000)

5.定义网络结构和评价函数

import mindspore
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore.common.initializer import Normal

class Network(nn.Cell):
    def __init__(self, num_of_weights):
        super(Network, self).__init__()
        self.fc = nn.Dense(in_channels=num_of_weights, out_channels=10, weight_init=Normal(0.02))  # 定义一个全连接层
        self.nonlinearity = nn.Sigmoid()
        self.flatten = nn.Flatten()
    
    def construct(self, x):  # 加权求和单元和非线性函数单元通过定义计算过程来实现
        x = self.flatten(x)
        z = self.fc(x)
        pred_y = self.nonlinearity(z)
        return pred_y
    
def evaluate(pred_y, true_y): 
    pred_labels = ops.Argmax(output_type=mindspore.int32)(pred_y)
    correct_num = (pred_labels == true_y).asnumpy().sum().item()
    return correct_num

6.定义交叉熵损失函数和优化器

# 损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')

# 创建网络
network = Network(28*28)  
lr = 0.01
momentum = 0.9

# 优化器
net_opt = nn.Momentum(network.trainable_params(), lr, momentum)

7.实现训练函数

def train(network, mnist_ds_train, max_epochs= 50):
    net = WithLossCell(network, net_loss)
    net = TrainOneStepCell(net, net_opt)
    network.set_train()
    for epoch in range(1, max_epochs + 1):
        train_correct_num = 0.0
        test_correct_num = 0.0
        for inputs_train in mnist_ds_train:
            output = net(*inputs_train)
            train_x = inputs_train[0]
            train_y = inputs_train[1]
            pred_y_train = network.construct(train_x)  # 前向传播
            train_correct_num += evaluate(pred_y_train, train_y)
        train_acc = float(train_correct_num) / train_len
        
        for inputs_test in mnist_ds_test:
            test_x = inputs_test[0]
            test_y = inputs_test[1]
            pred_y_test = network.construct(test_x)
            test_correct_num += evaluate(pred_y_test, test_y)
        test_acc = float(test_correct_num) / test_len
        if (epoch == 1) or (epoch % 10 == 0):
            print("epoch: {0}/{1}, train_losses: {2:.4f}, tain_acc: {3:.4f}, test_acc: {4:.4f}" \
                  .format(epoch, max_epochs, output.asnumpy(), train_acc, test_acc, cflush=True))

 8.配置运行信息

        在正式训练前,通过context.set_context来配置运行需要的信息,譬如运行模式、后端信息、硬件等信息。

from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")  # device_target 可选 CPU/GPU, 当选择GPU时mindspore规格也需要切换到GPU

9.开始训练

import time
from mindspore.nn import WithLossCell, TrainOneStepCell

max_epochs = 100
start_time = time.time()
print("*"*10 + "开始训练" + "*"*10)
train(network, mnist_ds_train, max_epochs= max_epochs)
print("*"*10 + "训练完成" + "*"*10)
cost_time = round(time.time() - start_time, 1)
print("训练总耗时: %.1f s" % cost_time)

**********开始训练**********

epoch: 1/100, train_losses: 2.2832, tain_acc: 0.1698, test_acc: 0.1626

epoch: 10/100, train_losses: 2.0465, tain_acc: 0.6343, test_acc: 0.6017

epoch: 20/100, train_losses: 1.8368, tain_acc: 0.7918, test_acc: 0.7812

epoch: 30/100, train_losses: 1.7602, tain_acc: 0.8138, test_acc: 0.8017

epoch: 40/100, train_losses: 1.7245, tain_acc: 0.8238, test_acc: 0.7972

epoch: 50/100, train_losses: 1.7051, tain_acc: 0.8337, test_acc: 0.8044

epoch: 60/100, train_losses: 1.6922, tain_acc: 0.8403, test_acc: 0.8047

epoch: 70/100, train_losses: 1.6827, tain_acc: 0.8454, test_acc: 0.8033

epoch: 80/100, train_losses: 1.6752, tain_acc: 0.8501, test_acc: 0.8051

epoch: 90/100, train_losses: 1.6689, tain_acc: 0.8536, test_acc: 0.8049

epoch: 100/100, train_losses: 1.6635, tain_acc: 0.8569, test_acc: 0.8037

**********训练完成**********

训练总耗时: 430.7 s

到目前为止,对基于手写数字二分类的代码进行少量修改,就快速实现了手写数字识别的十分类;

修改的过程是非常简单的,但从上面的结果可以看到,该模型训练100个epoch,在手写数字识别十分类的任务上仅仅达到了80%的准确率,而在上一节二分类任务上,模型训练50个epoch达到了99%的准确率,说明在感知机这样简单的模型上,手写数字识别十分类要比二分类要难。

猜你喜欢

转载自blog.csdn.net/m0_54776464/article/details/125921059
今日推荐