定积分的计算(分部积分法)

前置知识


定积分分部积分法

u , v u,v u,v [ a , b ] [a,b] [a,b]上可导,且 u ′ , v ′ u',v' u,v [ a , b ] [a,b] [a,b]上连续,则

∫ a b u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) ∣ a b − ∫ a b u ′ ( x ) v ( x ) d x \int_a^bu(x)v'(x)dx=u(x)v(x)\bigg\vert_a^b-\int_a^bu'(x)v(x)dx abu(x)v(x)dx=u(x)v(x) ababu(x)v(x)dx

也可写作

∫ a b u d v = u v ∣ a b − ∫ a b v d u \int_a^budv=uv\bigg\vert_a^b-\int_a^bvdu abudv=uv ababvdu

证明: 根据复合函数求导,有

u ( x ) v ( x ) ∣ a b = ∫ a b [ u ( x ) v ( x ) ] ′ d x = ∫ a b u ( x ) v ′ ( x ) d x + ∫ a b u ′ ( x ) v ( x ) d x u(x)v(x)\bigg\vert_a^b=\int_a^b[u(x)v(x)]'dx=\int_a^bu(x)v'(x)dx+\int_a^bu'(x)v(x)dx u(x)v(x) ab=ab[u(x)v(x)]dx=abu(x)v(x)dx+abu(x)v(x)dx

移项得

∫ a b u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) ∣ a b − ∫ a b u ′ ( x ) v ( x ) d x \int_a^bu(x)v'(x)dx=u(x)v(x)\bigg\vert_a^b-\int_a^bu'(x)v(x)dx abu(x)v(x)dx=u(x)v(x) ababu(x)v(x)dx


例题1

计算 ∫ 0 1 x e x d x \int_0^1xe^xdx 01xexdx

解:
\qquad 原式 = ∫ 0 1 x d ( e x ) = x e x ∣ 0 1 − ∫ 0 1 e x d x = x e x ∣ 0 1 − e x ∣ 0 1 = e − ( e − 1 ) = 1 =\int_0^1xd(e^x)=xe^x\bigg\vert_0^1-\int_0^1e^xdx=xe^x\bigg\vert_0^1-e^x\bigg\vert_0^1=e-(e-1)=1 =01xd(ex)=xex 0101exdx=xex 01ex 01=e(e1)=1


例题2

已知 f ( 1 ) = 2 f(1)=2 f(1)=2 ∫ 0 1 f ( x ) d x = 1 \int_0^1f(x)dx=1 01f(x)dx=1,计算 ∫ 0 1 x f ′ ( x ) d x \int_0^1xf'(x)dx 01xf(x)dx

解:
\qquad 原式 = ∫ 0 1 x d [ f ( x ) ] = x f ( x ) ∣ 0 1 − ∫ 0 1 f ( x ) d x = f ( 1 ) − ∫ 0 1 f ( x ) d x = 2 − 1 = 1 =\int_0^1xd[f(x)]=xf(x)\bigg\vert_0^1-\int_0^1f(x)dx=f(1)-\int_0^1f(x)dx=2-1=1 =01xd[f(x)]=xf(x) 0101f(x)dx=f(1)01f(x)dx=21=1

猜你喜欢

转载自blog.csdn.net/tanjunming2020/article/details/131061572