导数大题练习(2023年高考真题)

已知函数 f ( x ) = a ( e x + a ) − x f(x)=a(e^x+a)-x f(x)=a(ex+a)x
(1)讨论 f ( x ) f(x) f(x)的单调性
(2)证明:当 a > 0 a>0 a>0时,求证: f ( x ) > 2 ln ⁡ a + 3 2 f(x)>2\ln a+\dfrac 32 f(x)>2lna+23

解:
\quad (1) f ′ ( x ) = a e x − 1 f'(x)=ae^x-1 f(x)=aex1

\qquad a > 0 a>0 a>0时, x = − ln ⁡ a x=-\ln a x=lna f ′ ( x ) = 0 f'(x)=0 f(x)=0

f ( x ) \qquad f(x) f(x) [ − ln ⁡ a , + ∞ ) [-\ln a,+\infty) [lna,+)上单调递增,在 ( − ∞ , − ln ⁡ a ] (-\infty,-\ln a] (,lna]上单调递减

\qquad a ≤ 0 a\leq 0 a0时, f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上单调递减

\quad (2)由(1)得 x = − ln ⁡ a x=-\ln a x=lna f ( x ) f(x) f(x)取最小值

\qquad 题目即证 f ( − ln ⁡ a ) > 2 ln ⁡ a + 3 2 f(-\ln a)>2\ln a+\dfrac 32 f(lna)>2lna+23

\qquad 1 + a 2 − ln ⁡ a > 2 ln ⁡ a + 3 2 1+a^2-\ln a>2\ln a+\dfrac 32 1+a2lna>2lna+23 a 2 − 3 ln ⁡ a − 1 2 > 0 a^2-3\ln a-\dfrac 12>0 a23lna21>0

\qquad g ( a ) = a 2 − 3 ln ⁡ a − 1 2 g(a)=a^2-3\ln a-\dfrac 12 g(a)=a23lna21,则 g ′ ( a ) = 2 a − 3 a g'(a)=2a-\dfrac 3a g(a)=2aa3

\qquad a = 6 2 a=\dfrac{\sqrt 6}{2} a=26 g ′ ( a ) = 0 g'(a)=0 g(a)=0

g ( a ) \qquad g(a) g(a) [ 6 2 , + ∞ ) [\dfrac{\sqrt 6}{2},+\infty) [26 ,+)上单调递增,在 ( − ∞ , 6 2 ] (-\infty,\dfrac{\sqrt 6}{2}] (,26 ]上单调递减

\qquad 所以 g ( a ) ≥ g ( 6 2 ) = 1 − ln ⁡ 3 6 4 > 0 g(a)\geq g(\dfrac{\sqrt 6}{2})=1-\ln\dfrac{3\sqrt 6}{4}>0 g(a)g(26 )=1ln436 >0

\qquad a 2 − 3 ln ⁡ a − 1 2 > 0 a^2-3\ln a-\dfrac 12>0 a23lna21>0

\qquad 由此可得 f ( x ) > 2 ln ⁡ a + 3 2 f(x)>2\ln a+\dfrac 32 f(x)>2lna+23

猜你喜欢

转载自blog.csdn.net/tanjunming2020/article/details/131264544