transformer与vit代码阅读

tansformer

如上图所示左半部分为编码器,右半部分为译码器。整个代码也从将这两部分代码拆解开。

1.Encoder

def clones(module, N):
    "Produce N identical layers."
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])


# %% id="xqVTz9MkTsqD"
class Encoder(nn.Module):
    "Core encoder is a stack of N layers"

    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)

    def forward(self, x, mask):
        "Pass the input (and mask) through each layer in turn."
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)

Encoder将N层EncoderLayer连接,如上面代码和下图所示:

   图1.Encoder

1.1 LayerNorm

 由图一可以看出,EncoderLayer包含了两个子层,并且两个子层都包含Residual+LayerNorm

class LayerNorm(nn.Module):
    "Construct a layernorm module (See citation for details)."

    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

上面为LayerNorm模块,Layer Normalization的作用是把神经网络中隐藏层归一为标准正态分布,以起到加快训练速度,加速收敛的作用。

1.2 Residual

class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """

    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        return x + self.dropout(sublayer(self.norm(x)))

上面为Residual模块,目的是在网络深度加深的情况下解决梯度消失的问题。

class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"
    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        self.size = size

    def forward(self, x, mask):
        "Follow Figure 1 (left) for connections."
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        return self.sublayer[1](x, self.feed_forward)

如上所示,便是由上面两个模块构成了EncoderLayer。 

2.Decoder

class DecoderLayer(nn.Module):
    "Decoder is made of self-attn, src-attn, and feed forward (defined below)"

    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)

    def forward(self, x, memory, src_mask, tgt_mask):
        "Follow Figure 1 (right) for connections."
        m = memory
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
        return self.sublayer[2](x, self.feed_forward)

从结构图和代码中可以看出,Decoder与Encoder结构极为相似,唯一的不同便是它多了一层注意力子层。

2.1 Mask

可以看出,Decoder的第一个注意力子层多了个masked,具体代码如下:

def subsequent_mask(size):
    "Mask out subsequent positions."
    attn_shape = (1, size, size)
    subsequent_mask = torch.triu(torch.ones(attn_shape), diagonal=1).type(
        torch.uint8
    )
    return subsequent_mask == 0

 

举例如上图所示,当你计算b2时,将a3、a4忽略,只考虑a1与a2,这就是所谓的mask机制。

3.多头注意力机制

class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None):
        "Implements Figure 2"
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)

        # 1) Do all the linear projections in batch from d_model => h x d_k
        query, key, value = [
            lin(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
            for lin, x in zip(self.linears, (query, key, value))
        ]

        # 2) Apply attention on all the projected vectors in batch.
        x, self.attn = attention(
            query, key, value, mask=mask, dropout=self.dropout
        )

        # 3) "Concat" using a view and apply a final linear.
        x = (
            x.transpose(1, 2)
            .contiguous()
            .view(nbatches, -1, self.h * self.d_k)
        )
        del query
        del key
        del value
        return self.linears[-1](x)

如上图举例所示,qi1在算attention分数时忽略qi2,只计算qi1的attention,qi2也是同样的操作,这即是两头时的操作,多头操作亦如此。

4. 位置编码

由于Transformer模型没有循环神经网络的迭代操作,所有必须提供每个字的位置信息给Transformer,这样它才能识别出语言中的顺序关系。

 如上图所示,在transformer的结构图中,有一个“Positional Encoding”,即位置编码,代码实现如下:

class PositionalEncoding(nn.Module):
    "Implement the PE function."

    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)
        )
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer("pe", pe)

    def forward(self, x):
        x = x + self.pe[:, : x.size(1)].requires_grad_(False)
        return self.dropout(x)

在transformer中的位置编码中,其编码公式如下:

pos表示当前字符在输入字符中的位置

i为该字符的维度下标对2求模

dmodel​表示该字符的维度

5.FeedForward

 FeedForward可以细分为有两层,第一层是一个线性激活函数,第二层是激活函数是ReLu。

代码实现如下:

class PositionwiseFeedForward(nn.Module):
    "Implements FFN equation."

    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(self.w_1(x).relu()))

VisionTransformer的代码实现

1.图片预处理

 transform = Compose([
     Resize((224, 224)),
     ToTensor(),
 ])
 
 x = transform(img)
 x = x.unsqueeze(0)
#添加一个维度?
 print(x.shape)

处理后,图片输入大小为[3*224*224]

2.卷积处理

 class PatchEmbedding(nn.Module):
     def __init__(self, in_channels: int = 3, patch_size: int = 16, emb_size: int = 768):
         self.patch_size = patch_size
         super().__init__()
         self.projection = nn.Sequential(
             nn.Conv2d(in_channels, emb_size, kernel_size=patch_size, stride=patch_size),
             Rearrange('b e (h) (w) -> b (h w) e'),
         ) # this breaks down the image in s1xs2 patches, and then flat them
                 
     def forward(self, x: Tensor) -> Tensor:
         x = self.projection(x)
         return x
nn.Conv2d(in_channels, emb_size, kernel_size=patch_size, stride=patch_size)

 输入图片为 [3*224*224],经过上面所示卷积,卷积核大小为16*16,步长为16,卷积核个数为768,得到输出[768*14*14]

(论文中是将输入图片按照16*16的大小划分为196个patch,每个patch大小为16*16*3,通过映射得到一个长度768的向量,而代码中则是通过一个卷积层实现。)

Rearrange('b e (h) (w) -> b (h w) e')

再将h和w维度展平,得到输出[768*196]

3.添加class token

self.cls_token = nn.Parameter(torch.randn(1, 1, emb_size))

x = torch.cat([cls_tokens, x], dim=1)

添加class token,class token是一个长度768的向量,与图片的token拼接,得到输出[768*197]。

4.添加位置编码

self.positions = nn.Parameter(torch.randn((224 // patch_size) ** 2 + 1, emb_size))

x += self.positions

位置编码是一个[197*768]的向量,直接叠加在token上,故输出仍是[197*768]

以上生成的向量即为编码器的输入

5.Transformer编码器

(未完成)

猜你喜欢

转载自blog.csdn.net/m0_63156697/article/details/127092326