【经典网络】HRNet

参考文章
GitHub项目
代码解读

网络介绍

在语义分割的时候需要得到一个高分辨率的heatmap进行关键点的检测。获取高分辨率的方式一般是采用先降分辨率再升分辨率的方法,例如U-Net,SegNet,DeconvNet,Hourglass。这些网络的一个特点是将不同的分辨率进行串联
与上述Net不同的是,HRNet并联了不同分辨率,并添加不同分辨率之间的交互。

并联、交互准则

  1. 相同分辨率的层直接复制
  2. upsampling采用bilinear upsample + 1*1 kernel统一channel数
  3. downsample使用strides 3*3kernel(没有使用pooling)
  4. feature map 之间的融合方式是相加

不同分辨率之间的连接方式

最终分支的选择

  1. 普适性选择:使用分辨率最高的特征图
  2. 语义分割和面部关键点检测:将所有分辨率的特征图在进行upsampling到统一维度后进行concate
  3. 目标检测:在concate基础上使用特征金字塔
  4. 分类网络:四个分支融合

code

# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by RainbowSecret ([email protected])
# ------------------------------------------------------------------------------

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from model_summary import get_model_summary

os.environ["CUDA_VISIBLE_DEVICES"]="0"

# you can modify your parameters here. Using HRNET32 as an example.
# using ReLU6 to replace ReLU here.

# --- HRNET_32 --- #
hrnet32 = {
    
    'STAGE1':{
    
    'NUM_MODULES':1, 'NUM_BRANCHES':1, 'NUM_BLOCKS': [4], 'NUM_CHANNELS':[64], 'BLOCK': 'BOTTLENECK', 'FUSE_METHOD': 'SUM'},
       'STAGE2':{
    
    'NUM_MODULES':1, 'NUM_BRANCHES':2, 'NUM_BLOCKS': [4,4], 'NUM_CHANNELS':[32, 64], 'BLOCK': 'BASIC', 'FUSE_METHOD': 'SUM'},
       'STAGE3':{
    
    'NUM_MODULES':4, 'NUM_BRANCHES':3, 'NUM_BLOCKS': [4,4,4], 'NUM_CHANNELS':[32,64,128], 'BLOCK': 'BASIC', 'FUSE_METHOD': 'SUM'},
       'STAGE4':{
    
    'NUM_MODULES':3, 'NUM_BRANCHES':4, 'NUM_BLOCKS': [4,4,4,4], 'NUM_CHANNELS':[32,64,128,256], 'BLOCK': 'BASIC', 'FUSE_METHOD': 'SUM'}}
 

def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, bias=False, dilation=dilation)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

# -- weight initialization -- #
def initialize_weights(*models):
    for model in models:
        for m in model.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight.data, nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1.)
                m.bias.data.fill_(1e-4)
            elif isinstance(m, nn.Linear):
                m.weight.data.normal_(0.0, 0.0001)
                m.bias.data.zero_()
                
class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes, eps=1e-3)
        self.relu = nn.ReLU6(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes, eps=1e-3)
        self.downsample = downsample
        self.stride = stride
        
        initialize_weights(self)

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):

    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width, eps=1e-3)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width, eps=1e-3)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion, eps=1e-3)
        self.relu = nn.ReLU6(inplace=True)
        self.downsample = downsample
        self.stride = stride
        
        initialize_weights(self)

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class HighResolutionModule(nn.Module):
    def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
                 num_channels, fuse_method, multi_scale_output=True, norm_layer=None):
        super(HighResolutionModule, self).__init__()
        self._check_branches(
            num_branches, blocks, num_blocks, num_inchannels, num_channels)

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self.norm_layer = norm_layer

        self.num_inchannels = num_inchannels
        self.fuse_method = fuse_method
        self.num_branches = num_branches

        self.multi_scale_output = multi_scale_output

        self.branches = self._make_branches(
            num_branches, blocks, num_blocks, num_channels)
        self.fuse_layers = self._make_fuse_layers()
        self.relu = nn.ReLU6(inplace=True)
        
        initialize_weights(self)

    def _check_branches(self, num_branches, blocks, num_blocks,
                        num_inchannels, num_channels):
        if num_branches != len(num_blocks):
            error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
                num_branches, len(num_blocks))
            raise ValueError(error_msg)

        if num_branches != len(num_channels):
            error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
                num_branches, len(num_channels))
            raise ValueError(error_msg)

        if num_branches != len(num_inchannels):
            error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
                num_branches, len(num_inchannels))
            raise ValueError(error_msg)

    def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
                         stride=1):
        downsample = None
        if stride != 1 or \
                self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.num_inchannels[branch_index],
                          num_channels[branch_index] * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                self.norm_layer(num_channels[branch_index] * block.expansion),
            )

        layers = []
        layers.append(block(self.num_inchannels[branch_index],
                            num_channels[branch_index], stride, downsample, norm_layer=self.norm_layer))
        self.num_inchannels[branch_index] = \
            num_channels[branch_index] * block.expansion
        for i in range(1, num_blocks[branch_index]):
            layers.append(block(self.num_inchannels[branch_index],
                                num_channels[branch_index], norm_layer=self.norm_layer))

        return nn.Sequential(*layers)

    def _make_branches(self, num_branches, block, num_blocks, num_channels):
        branches = []

        for i in range(num_branches):
            branches.append(
                self._make_one_branch(i, block, num_blocks, num_channels))

        return nn.ModuleList(branches)

    def _make_fuse_layers(self):
        if self.num_branches == 1:
            return None

        num_branches = self.num_branches
        num_inchannels = self.num_inchannels
        fuse_layers = []
        for i in range(num_branches if self.multi_scale_output else 1):
            fuse_layer = []
            for j in range(num_branches):
                if j > i:
                    fuse_layer.append(nn.Sequential(
                        nn.Conv2d(num_inchannels[j],
                                  num_inchannels[i],
                                  1,
                                  1,
                                  0,
                                  bias=False),
                        self.norm_layer(num_inchannels[i], eps=1e-3)))
                elif j == i:
                    fuse_layer.append(None)
                else:
                    conv3x3s = []
                    for k in range(i-j):
                        if k == i - j - 1:
                            num_outchannels_conv3x3 = num_inchannels[i]
                            conv3x3s.append(nn.Sequential(
                                nn.Conv2d(num_inchannels[j],
                                          num_outchannels_conv3x3,
                                          3, 2, 1, bias=False),
                                self.norm_layer(num_outchannels_conv3x3, eps=1e-3)))
                        else:
                            num_outchannels_conv3x3 = num_inchannels[j]
                            conv3x3s.append(nn.Sequential(
                                nn.Conv2d(num_inchannels[j],
                                          num_outchannels_conv3x3,
                                          3, 2, 1, bias=False),
                                self.norm_layer(num_outchannels_conv3x3, eps=1e-3),
                                nn.ReLU6(inplace=True)))
                    fuse_layer.append(nn.Sequential(*conv3x3s))
            fuse_layers.append(nn.ModuleList(fuse_layer))

        return nn.ModuleList(fuse_layers)

    def get_num_inchannels(self):
        return self.num_inchannels

    def forward(self, x):
        if self.num_branches == 1:
            return [self.branches[0](x[0])]

        for i in range(self.num_branches):
            x[i] = self.branches[i](x[i])

        x_fuse = []
        for i in range(len(self.fuse_layers)):
            y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
            for j in range(1, self.num_branches):
                if i == j:
                    y = y + x[j]
                elif j > i:
                    width_output = x[i].shape[-1]
                    height_output = x[i].shape[-2]
                    y = y + F.interpolate(
                        self.fuse_layers[i][j](x[j]),
                        size=[height_output, width_output],
                        mode='bilinear',
                        align_corners=True
                        )
                else:
                    y = y + self.fuse_layers[i][j](x[j])
            x_fuse.append(self.relu(y))

        return x_fuse


blocks_dict = {
    
    
    'BASIC': BasicBlock,
    'BOTTLENECK': Bottleneck
}

class HighResolutionNet(nn.Module):

    def __init__(self,
                 original_figure_channel,
                 options,
                 cfg=None,
                 norm_layer=None):
        super(HighResolutionNet, self).__init__()

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if cfg is None:
            cfg = hrnet32
        self.norm_layer = norm_layer
        self.original_figure_channel = original_figure_channel
        
        # stem network
        # stem net
        self.conv1 = nn.Conv2d(self.original_figure_channel, 64, kernel_size=3, stride=2, padding=1,
                               bias=False)
        self.bn1 = self.norm_layer(64)
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1,
                               bias=False)
        self.bn2 = self.norm_layer(64)
        self.relu = nn.ReLU6(inplace=True)

        # stage 1
        self.stage1_cfg = cfg['STAGE1']
        num_channels = self.stage1_cfg['NUM_CHANNELS'][0]
        block = blocks_dict[self.stage1_cfg['BLOCK']]
        num_blocks = self.stage1_cfg['NUM_BLOCKS'][0]
        self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)
        stage1_out_channel = block.expansion*num_channels

        # stage 2
        self.stage2_cfg = cfg['STAGE2']
        num_channels = self.stage2_cfg['NUM_CHANNELS']
        block = blocks_dict[self.stage2_cfg['BLOCK']]
        num_channels = [
            num_channels[i] * block.expansion for i in range(len(num_channels))]
        self.transition1 = self._make_transition_layer(
            [stage1_out_channel], num_channels)
        self.stage2, pre_stage_channels = self._make_stage(
            self.stage2_cfg, num_channels)

        # stage 3
        self.stage3_cfg = cfg['STAGE3']
        num_channels = self.stage3_cfg['NUM_CHANNELS']
        block = blocks_dict[self.stage3_cfg['BLOCK']]
        num_channels = [
            num_channels[i] * block.expansion for i in range(len(num_channels))]
        self.transition2 = self._make_transition_layer(
            pre_stage_channels, num_channels)
        self.stage3, pre_stage_channels = self._make_stage(
            self.stage3_cfg, num_channels)

        # stage 4
        self.stage4_cfg = cfg['STAGE4']
        num_channels = self.stage4_cfg['NUM_CHANNELS']
        block = blocks_dict[self.stage4_cfg['BLOCK']]
        num_channels = [
            num_channels[i] * block.expansion for i in range(len(num_channels))]
        self.transition3 = self._make_transition_layer(
            pre_stage_channels, num_channels)
        self.stage4, pre_stage_channels = self._make_stage(
            self.stage4_cfg, num_channels, multi_scale_output=True)
        
        last_inp_channels = np.int(np.sum(pre_stage_channels))

        self.last_layer = nn.Sequential(
            nn.Conv2d(
                in_channels=last_inp_channels,
                out_channels=last_inp_channels,
                kernel_size=1,
                stride=1,
                padding=0),
            self.norm_layer(last_inp_channels, eps=1e-3),
            nn.ReLU6(inplace=True),
            nn.Conv2d(
                in_channels=last_inp_channels,
                # --- Modified according to FeatureMap input --- #
                out_channels=128,
                kernel_size=1,
                stride=1,
                padding=0),
            # --- Add batch norm solvee test loss nan --- #
            self.norm_layer(128, eps=1e-3)
        )


    def _make_transition_layer(
        self, num_channels_pre_layer, num_channels_cur_layer):
        num_branches_cur = len(num_channels_cur_layer)
        num_branches_pre = len(num_channels_pre_layer)

        transition_layers = []
        for i in range(num_branches_cur):
            if i < num_branches_pre:
                if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
                    transition_layers.append(nn.Sequential(
                        nn.Conv2d(num_channels_pre_layer[i],
                                  num_channels_cur_layer[i],
                                  3,
                                  1,
                                  1,
                                  bias=False),
                        self.norm_layer(num_channels_cur_layer[i], eps=1e-3),
                        nn.ReLU6(inplace=True)))
                else:
                    transition_layers.append(None)
            else:
                conv3x3s = []
                for j in range(i+1-num_branches_pre):
                    inchannels = num_channels_pre_layer[-1]
                    outchannels = num_channels_cur_layer[i] \
                        if j == i-num_branches_pre else inchannels
                    conv3x3s.append(nn.Sequential(
                        nn.Conv2d(
                            inchannels, outchannels, 3, 2, 1, bias=False),
                        self.norm_layer(outchannels, eps=1e-3),
                        nn.ReLU6(inplace=True)))
                transition_layers.append(nn.Sequential(*conv3x3s))

        return nn.ModuleList(transition_layers)

    def _make_layer(self, block, inplanes, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                self.norm_layer(planes * block.expansion, eps=1e-3),
            )

        layers = []
        layers.append(block(inplanes, planes, stride, downsample, norm_layer=self.norm_layer))
        inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(inplanes, planes, norm_layer=self.norm_layer))

        return nn.Sequential(*layers)

    def _make_stage(self, layer_config, num_inchannels,
                    multi_scale_output=True):
        num_modules = layer_config['NUM_MODULES']
        num_branches = layer_config['NUM_BRANCHES']
        num_blocks = layer_config['NUM_BLOCKS']
        num_channels = layer_config['NUM_CHANNELS']
        block = blocks_dict[layer_config['BLOCK']]
        fuse_method = layer_config['FUSE_METHOD']

        modules = []
        for i in range(num_modules):
            # multi_scale_output is only used last module
            if not multi_scale_output and i == num_modules - 1:
                reset_multi_scale_output = False
            else:
                reset_multi_scale_output = True

            modules.append(
                HighResolutionModule(num_branches,
                                     block,
                                     num_blocks,
                                     num_inchannels,
                                     num_channels,
                                     fuse_method,
                                     reset_multi_scale_output,
                                     norm_layer=self.norm_layer)
            )
            num_inchannels = modules[-1].get_num_inchannels()

        return nn.Sequential(*modules), num_inchannels


    def forward(self, x_):
        x = self.conv1(x_)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)
        x = self.layer1(x)

        x_list = []
        for i in range(self.stage2_cfg['NUM_BRANCHES']):
            if self.transition1[i] is not None:
                x_list.append(self.transition1[i](x))
            else:
                x_list.append(x)
        y_list = self.stage2(x_list)

        x_list = []
        for i in range(self.stage3_cfg['NUM_BRANCHES']):
            if self.transition2[i] is not None:
                if i < self.stage2_cfg['NUM_BRANCHES']:
                    x_list.append(self.transition2[i](y_list[i]))
                else:
                    x_list.append(self.transition2[i](y_list[-1]))
            else:
                x_list.append(y_list[i])
        y_list = self.stage3(x_list)

        x_list = []
        for i in range(self.stage4_cfg['NUM_BRANCHES']):
            if self.transition3[i] is not None:
                if i < self.stage3_cfg['NUM_BRANCHES']:
                    x_list.append(self.transition3[i](y_list[i]))
                else:
                    x_list.append(self.transition3[i](y_list[-1]))
            else:
                x_list.append(y_list[i])
        x = self.stage4(x_list)

        # Upsampling
        #print(x[0].size(), x[1].size(), x[2].size(), x[3].size())
        # --- upsampling to original size --- *
        x0_h, x0_w = x[0].size(2), x[0].size(3)
        #x0_h, x0_w = x_.size(2), x_.size(3)
        #x0 = F.interpolate(x[0], size=(x0_h, x0_w), mode='bilinear', align_corners=True)
        x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=True)
        x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=True)
        x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=True)

        #x = torch.cat([x[0], x1, x2, x3], 1)
        x = torch.cat([x[0], x1, x2, x3], 1)

        x = self.last_layer(x)

        return x
    

if __name__ == '__main__':
    device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
    img = torch.randn(1, 27, 256, 256)
    img = img.to(device)
    model = HighResolutionNet(cfg=hrnet32, original_figure_channel=img.size()[1], options = None)
    model = model.to(device)
    details = get_model_summary(model, img)
    output = model(img)
    print(output.shape)
    print(details)

# OUTPUT: 
torch.Size([1, 128, 64, 64])

Total Parameters: 29,613,024
----------------------------------------------------------------------------------------------------------------------------------
Total Multiply Adds (For Convolution and Linear Layers only): 10.923583984375 GFLOPs
----------------------------------------------------------------------------------------------------------------------------------
Number of Layers
Conv2d : 307 layers   BatchNorm2d : 307 layers   ReLU6 : 269 layers   Bottleneck : 4 layers   BasicBlock : 104 layers   HighResolutionModule : 8 layers   

猜你喜欢

转载自blog.csdn.net/yaoyao_chen/article/details/128855972
今日推荐