Codeforces-985C - Liebig's Barrels - 贪心

题解链接

https://www.lucien.ink/archives/234/


题目链接

http://codeforces.com/contest/985/problem/C


题目

You have m = n·k wooden staves. The i-th stave has length ai. You have to assemble n barrels consisting of k staves each, you can use any k staves to construct a barrel. Each stave must belong to exactly one barrel.

Let volume vj of barrel j be equal to the length of the minimal stave in it.

You want to assemble exactly n barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed l, i.e. |vx - vy| ≤ l for any 1 ≤ x ≤ n and 1 ≤ y ≤ n.

Print maximal total sum of volumes of equal enough barrels or 0 if it’s impossible to satisfy the condition above.

Input

The first line contains three space-separated integers n, k and l ( 1 n , k 10 5 , 1 n · k 10 5 , 0 l 10 9 ) .

The second line contains m = n·k space-separated integers a 1 , a 2 , . . . , a m ( 1 a i 10 9 ) — lengths of staves.

Output

Print single integer — maximal total sum of the volumes of barrels or 0 if it’s impossible to construct exactly n barrels satisfying the condition | v x v y | l for any 1 ≤ x ≤ n and 1 ≤ y ≤ n.


题意

  需要造n个桶,每个桶需要k个木板,任意两个桶之间容积(一个桶中最短的木板的高度)的差距不能超过l,然后给你n * k个木板,第 i 个木板的长度为 a i ,问能否造出符合条件的n个桶,如果能的话问这n个桶的容积之和最大是多少,如果不能的话就输出0


思路

  首先对所有木板sort一下,由于短板效应,我们至少可以让前n个木板恰好为n个桶的容积,判断一下 a n a 1 l 是否成立,不成立的话一定是 0 ,因为前n个的木板的差距一定是最小的。

  我们发现,如果我们让每连续的k个木板形成一个桶的话,那么这些桶的容积将会是 a 1 a k + 1 a 2 k + 1 ,中间一些较小的木板都会被更短但是又必须得取的木板给包含,这样一定是最优的。

  首先我们找到一个最大的upper,使得 a u p p e r a 1 l     ( u p p e r n · k ) 成立,这样在 [ 1 , u p p e r ] 的范围内以任意n个木板的高度为桶的容积都是合法的。假设此时我们选了 x 个连续的k来造桶,还需要再造 y 个桶才能造够n个桶,则有:

x · k + y u p p e r
x + y = n

  移项、代入、化简:

x u p p e r n k 1

  也就是说:得到 x 后, y 也就相应出来了,对于剩下的 u p p e r x · k 个木板,显然取后 y 1 个和第 x · k + 1 个木板作为剩下的 y 个桶的容积是最优的。


实现

#include <bits/stdc++.h>
typedef long long ll;
const int maxn = int(1e5) + 7;
ll n, k, l, m, a[maxn], ans, upper;
int main() {
    scanf("%lld%lld%lld", &n, &k, &l);
    m = n * k;
    for (ll i = 1; i <= m; i++) scanf("%lld", a + i);
    std::sort(a + 1, a + 1 + m);
    if (a[n] - a[1] > l) return 0 * puts("0");
    if (k == 1) for (ll i = 1; i <= n; i++) ans += a[i];
    else {
        while (a[upper] - a[1] <= l && upper <= m) upper++;
        upper--;
        ll x = (upper - n) / (k - 1);
        for (ll i = 1, cur = 1; i <= x; i++, cur += k) ans += a[cur];
        for (ll i = 1; i < n - x; i++) ans += a[upper--];
        ans += a[x * k + 1];
    }
    printf("%lld\n", ans);
    return 0;
}

猜你喜欢

转载自blog.csdn.net/xs18952904/article/details/80400675
今日推荐