C++ List链表使用

1. list的介绍及使用

1.1 list的介绍

1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代

2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。

3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。

4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。

5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

list的底层:带头节点双向链表结构

1.2 list的使用

使用list要带上头文件’

#include<list>

1.2.1 list的构造

//构造打印练习
void TestList()
{
    list<int>L1;
    //十个值为5
    list<int>L2(10,5);

    //区间方式构造
    vector<int>v{ 0,3,35,34,2 };
    list<int>L3(v.begin(),v.end());

    //拷贝构造
    list<int>L4(L3);

    //列表构造
    list<int>L5{ 1,23,34 };

    //打印,范围for
    for (auto e:L2)
    {
        cout << e << " ";
    }
    cout << endl;

    //迭代器打印
    auto it = L3.begin();
    while (it != L3.end())
    {
        cout << *it << " ";
        ++it;
    }
    cout << endl;
}

1.2.2 list iterator的使用

1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动

2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

1.2.3 list capacity

1.2.4 list element access

1.2.5 list modififiers

上面一些方法的使用,都很简单,随意测试一下

void TestList()
{
    list<int>L;
    L.push_back(1);
    L.push_back(2);
    L.push_back(3);
    L.push_back(4);
    L.push_back(5);

    cout << L.size() << endl;
    cout << L.front() << endl;//访问起始位置
    cout << L.back() << endl;//访问末尾

    L.front() = 50;
    L.back() = 1000;

    L.pop_back();//删除list中最后一个元素

    cout << L.size() << endl;
    cout << L.front() << endl;
    cout << L.back() << endl;
}

任意位置的插入

void TestList()
{
    list<int>L;
    L.push_back(1);
    L.push_back(2);
    L.push_back(3);
    L.push_back(4);
    L.push_back(5);
    PrintList(L);

    auto pos = L.begin();
    L.insert(pos, 0);//在1的位置插入0,插入之前
    PrintList(L);

    cout << *pos << endl;//查看迭代器是否正常使用
    
    //在链表中值为data的节点前插入10个值为2的元素
    int data = 0;
    cin >> data;
    
    //在这个区间内找data,返回pos。如果没找到返回end
    pos= find(L.begin(),L.end(),data);

    if (pos != L.end())
    {
        L.insert(pos, 10, 2);
    }
    PrintList(L);

    //区间形式
    pos = L.begin();
    vector<int>v{ 10,20,34,34,1244 };
    L.insert(pos, v.begin(), v.end());
    PrintList(L);
}

1.2.6 list的迭代器失效

void TestList()
{
    list<int>L;
    L.push_back(1);
    L.push_back(2);
    L.push_back(3);
    L.push_back(4);
    L.push_back(5);
    PrintList(L);

    auto pos1 = L.begin();
    auto pos2 = find(L.begin(),L.end(),5);
    cout << *pos2 << endl;

    L.erase(pos1);//将pos1位置处元素删除
    PrintList(L);

    cout << *pos2 << endl;//检测迭代器是否失效
    cout << *pos1 << endl;
    //结果是pos2正常,pos1失效
}

erase会导致删除位置的迭代器失效,但是对于其他位置的迭代器没有影响。

迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

2. list的模拟实现

模拟实现具体可以参阅网上文章

3. list与vector的对比

vector

list

动态顺序表,一段连续空间

带头结点的双向循环链表

访

支持随机访问,访问某个元素效率O(1)

不支持随机访问,访问某个元素效率O(N)

任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低

任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1)

底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高

底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低

原生态指针

对原生态指针(节点指针)进行封装

在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效

插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响

使

需要高效存储,支持随机访问,不关心插入删除效率

大量插入和删除操作,不关心随

机访问

猜你喜欢

转载自blog.csdn.net/weixin_59215611/article/details/129300152