C++:list的介绍与使用方法


list的介绍

list的文档介绍

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。

  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。

  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。

  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。

  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

在这里插入图片描述

list的使用

list中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展的能力。以下为list中一些常见的重要接口。

list的构造

构造函数( (constructor)) 接口说明
list() 构造空的list
list (size_type n, const value_type& val = value_type()) 构造的list中包含n个值为val的元素
list (const list& x) 拷贝构造函数
list (InputIterator first, InputIterator last) 用[first, last)区间中的元素构造list

代码示例:

#include <iostream>
#include <list>

int main() {
	std::list<int> l1;			// 构造空的l1
	std::list<int> l2(4, 100);	// l2中放4个值为100的元素
	std::list<int> l3(l2.begin(), l2.end()); // 用l2的[begin(), end())左闭右开的区间构造l3
	std::list<int> l4(l3);		// 用l3拷贝构造l4

	// 以数组为迭代器区间构造l5
	int array[] = { 16, 2, 77, 29 };
	std::list<int> l5(array, array + sizeof(array) / sizeof(int));
	
	// 用迭代器方式打印l5中的元素
	for (std::list<int>::iterator it = l5.begin(); it != l5.end(); it++)
		std::cout << *it << " ";
	std::cout << std::endl;
	
	// C++11范围for的方式遍历 
	for(auto& e : l5)
	std::cout << e << " ";
	std::cout << std::endl;

	return 0;
}

list iterator的使用

此处可将迭代器理解成一个指针,该指针指向list中的某个节点。

函数声明 接口说明
begin + end 返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin + rend 返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的 reverse_iterator,即begin位置

在这里插入图片描述

【注意】

  1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
  2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

代码示例:

#include <iostream>
#include <list>
using namespace std;

void print_list(const list<int>& l)
{
	// 注意这里调用的是list的 begin() const,返回list的const_iterator对象 
	for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it) {
	cout << *it << " ";
	// *it = 10; 编译不通过 
	}
	cout << endl;
}

int main() {
	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	list<int> l(array, array + sizeof(array) / sizeof(array[0])); 
	
	// 使用正向迭代器正向list中的元素
	for (list<int>::iterator it = l.begin(); it != l.end(); ++it)
		cout << *it << " ";
	cout << endl;
	
	// 使用反向迭代器逆向打印list中的元素
	for (list<int>::reverse_iterator it = l.rbegin(); it != l.rend(); ++it)
		cout << *it << " ";
	cout << endl;
	return 0;
}

list capacity

函数声明 接口说明
empty 检测list是否为空,是返回true,否则返回false
size 返回list中有效节点的个数

list element access

函数声明 接口说明
front 返回list的第一个节点中值的引用
back 返回list的最后一个节点中值的引用

list modifiers

函数声明 接口说明
push_front 在list首元素前插入值为val的元素
pop_front 删除list中第一个元素
push_back 在list尾部插入值为val的元素
pop_back 删除list中最后一个元素
insert 在list position 位置中插入值为val的元素
erase 删除list position位置的元素
swap 交换两个list中的元素
clear 清空list中的有效元素

代码示例:

#include <list>
#include <vector>
void PrintList(list<int>& l)
{
	for (auto& e : l)
		cout << e << " ";
	cout << endl;
}
//=========================================================================================
// push_back/pop_back/push_front/pop_front
void TestList()
{
	int array[] = { 1, 2, 3 };
	list<int> L(array, array + sizeof(array) / sizeof(array[0]));

	// 在list的尾部插入4,头部插入0
	L.push_back(4); 
	L.push_front(0); 
	PrintList(L);

	// 删除list尾部节点和头部节点 
	L.pop_back(); 
	L.pop_front(); 
	PrintList(L);
}
//=========================================================================================
// insert /erase
void TestList3()
{
	int array1[] = { 1, 2, 3 };
	list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));

	// 获取链表中第二个节点 
	auto pos = ++L.begin(); 
	cout << *pos << endl;

	// 在pos前插入值为4的元素 
	L.insert(pos, 4); 
	PrintList(L);

	// 在pos前插入5个值为5的元素 
	L.insert(pos, 5, 5); 
	PrintList(L);

	// 在pos前插入[v.begin(), v.end)区间中的元素 
	vector<int> v{ 7, 8, 9 };
	L.insert(pos, v.begin(), v.end()); 
	PrintList(L);

	// 删除pos位置上的元素 
	L.erase(pos);
	PrintList(L);

	// 删除list中[begin, end)区间中的元素,即删除list中的所有元素 
	L.erase(L.begin(), L.end());
	PrintList(L);
}
// resize/swap/clear
void TestList4()
{
	// 用数组来构造list
	int array1[] = { 1, 2, 3 };
	int array2[] = { 4, 5, 6 };
	list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0])); 
	list<int> l2(array2, array2 + sizeof(array2) / sizeof(array2[0]));

	PrintList(l1);
	PrintList(l2);

	// 交换l1和l2中的元素 
	l1.swap(l2); 
	PrintList(l1); 
	PrintList(l2);

	// 将l2中的元素清空 
	l2.clear(); 
	
	cout<<l2.size()<<endl;
}

list的迭代器失效

前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。

代码示例:

void TestListIterator1()
{
	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	list<int> l(array, array + sizeof(array) / sizeof(array[0]));
	auto it = l.begin();
	while (it != l.end())
	{
		// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值
		l.erase(it);
		++it;
	}
}

// 改正
void main() {
	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	list<int> l(array, array + sizeof(array) / sizeof(array[0]));
	auto it = l.begin();
	while (it != l.end())
	{
		l.erase(it++);
		// it = l.erase(it);
	}
}

list要点总结

  • 构造、insert、erase、push_back、begin、end等函数的使用,跟之前的容器没有区别

  • 不同点:
    1、insert函数不会导致迭代器失效
    2、不能进行随机访问(不存在[]重载)
    3、没有容量的概念(不存在resize reserve capacity等函数)

  • sort:针对链表进行排序

  • merge:将两个有序链表合成一个新的有序链表,被合成的链表(作为参数的链表容器)会被清空。

list与vector的对比

vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不 同,其主要不同如下:

对比 vector list
底 层 结 构 动态顺序表,一段连续空间 带头结点的双向循环链表
随 机 访 问 支持随机访问,访问某个元素效率O(1) 不支持随机访问,访问某个元素效率O(N)
插 入 和 删 除 任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低 任意位置插入和删除效率高,不需要搬移元素,时间复杂度为 O(1)
空 间 利 用 率 底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高 底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低
迭 代 器 原生态指针 对原生态指针(节点指针)进行封装
迭 代 器 失 效 在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效 插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响
使 用 场 景 需要高效存储,支持随机访问,不关心插入删除效率 大量插入和删除操作,不关心随机访问

如有不同见解,欢迎留言讨论!

发布了152 篇原创文章 · 获赞 45 · 访问量 1万+

猜你喜欢

转载自blog.csdn.net/AngelDg/article/details/105227494