【运筹优化】拉格朗日松弛 & 次梯度算法求解整数规划问题 + Java调用Cplex实战


一、拉格朗日松弛

当遇到一些很难求解的模型,但又不需要去求解它的精确解,只需要给出一个次优解或者解的上下界,这时便可以考虑采用松弛模型的方法加以求解。

对于一个整数规划问题,拉格朗日松弛放松模型中的部分约束。这些被松弛的约束并不是被完全去掉,而是利用拉格朗日乘子在目标函数上增加相应的惩罚项,对不满足这些约束条件的解进行惩罚。

拉格朗日松弛之所以受关注,是因为在大规模的组合优化问题中,若能在原问题中减少一些造成问题“难”的约束,则可使问题求解难度大大降低,有时甚至可以得到比线性松弛更好的上下界。

在这里插入图片描述
在这里插入图片描述


二、次梯度算法

由于拉格朗日对偶问题通常是分段线性的,这会导致其在某些段上不可导,所以没法使用常规的梯度下降法处理。于是引入次梯度(Subgradient)用于解决此类目标函数并不总是处处可导的问题。

次梯度算法的优势是比传统方法能够处理的问题范围更大,不足之处就是算法收敛速度慢。

在这里插入图片描述

在这里插入图片描述


三、案例实战

在这里插入图片描述
在这里插入图片描述

松弛之后的目标函数为

m a x : z = 16 x 1 + 10 x 2 + 4 x 4 + μ [ 10 − ( 8 x 1 + 2 x 2 + x 3 + 4 x 4 ) ] max :z=16x_1+10x_2+4x_4+\mu[10-(8x_1+2x_2+x_3+4x_4)] max:z=16x1+10x2+4x4+μ[10(8x1+2x2+x3+4x4)]

化简为

m a x : z = ( 16 − 8 μ ) x 1 + ( 10 − 2 μ ) x 2 + ( − μ ) x 3 + ( 4 − 4 μ ) x 4 + 10 μ max :z=(16-8\mu)x_1+(10-2\mu)x_2+(-\mu)x_3+(4-4\mu)x_4+10\mu max:z=(168μ)x1+(102μ)x2+(μ)x3+(44μ)x4+10μ

由于每一次迭代时 μ \mu μ 是一个确定的常数,所以目标函数中的 10 μ 10\mu 10μ 可以在建模时省略

具体求解代码如下:

import ilog.concert.IloException;
import ilog.concert.IloIntVar;
import ilog.concert.IloLinearNumExpr;
import ilog.cplex.IloCplex;

import java.util.Arrays;

public class TestLR {
    
    
    // lambda
    static double lambda = 2d;
    // 最大迭代次数
    static int epochs = 100;
    // 上界最大未更新次数
    static int ubMaxNonImproveCnt = 3;
    // 最小步长
    static double minStep = 0.001;
    // 松弛问题模型
    static IloCplex relaxProblemModel;
    // 变量数组
    static IloIntVar[] intVars;
    // 最佳上下界
    static double bestLB = 0d;
    static double bestUB = 1e10;
    // 最佳拉格朗日乘数
    static double bestMu = 0d;
    // 最佳解
    static double[] bestX;

    // 运行主函数
    public static void run() throws IloException {
    
    
        //
        double mu = 0d;
        double step = 1d;
        int ubNonImproveCnt = 0;
        // 初始化松弛问题模型
        initRelaxModel();
        // 开始迭代
        for (int epoch = 0; epoch < epochs; epoch++) {
    
    
            System.out.println("----------------------------- Epoch-" + (epoch + 1) + " -----------------------------");
            System.out.println("mu: " + mu);
            System.out.println("lambda: " + lambda);
            // 根据mu,设置松弛问题模型目标函数
            setRelaxModelObjectiveBuMu(mu);
            if (relaxProblemModel.solve()) {
    
    
                // 获得当前上界(由于建模时没有考虑常数 10*mu,所以这里要加回来,得到松弛问题的真正目标值)
                double curUB = relaxProblemModel.getObjValue() + 10 * mu;
                // 更新上界
                if (curUB < bestUB) {
    
    
                    bestUB = curUB;
                    ubNonImproveCnt = 0;
                } else {
    
    
                    ubNonImproveCnt++;
                }
                System.out.println("curUB: " + curUB);
                // 获取变量值
                double[] x = relaxProblemModel.getValues(intVars);
                // 计算次梯度
                double subGradient = (8 * x[0] + 2 * x[1] + x[2] + 4 * x[3]) - 10;
                double dist = Math.pow(subGradient, 2);
                // 迭迭代停止条件1
                if (dist <= 0.0) {
    
    
                    System.out.println("Early stop: dist (" + dist + ") <= 0 !");
                    break;
                }
                // 如果次梯度大于等于0,说明满足被松弛的约束,即可以作为原问题的可行解
                if (subGradient <= 0) {
    
    
                    // 计算当前原问题的解值
                    double obj = 16 * x[0] + 10 * x[1] + 4 * x[3];
                    if (obj > bestLB) {
    
    
                        // 更新下界
                        bestLB = obj;
                        bestMu = mu;
                        bestX = x.clone();
                    }
                }
                System.out.println("subGradient: " + subGradient);
                System.out.println("bestUB: " + bestUB);
                System.out.println("bestLB: " + bestLB);
                System.out.println("gap: " + String.format("%.2f", (bestUB - bestLB) * 100d / bestUB) + " %");
                // 迭代停止条件2
                if (bestLB >= bestUB - 1e-06) {
    
    
                    System.out.println("Early stop: bestLB (" + bestLB + ") >= bestUB (" + bestUB + ") !");
                    break;
                }
                // 上界未更新达到一定次数
                if (ubNonImproveCnt >= ubMaxNonImproveCnt) {
    
    
                    lambda /= 2;
                    ubNonImproveCnt = 0;
                }
                // 更新拉格朗日乘数
                mu = Math.max(0, mu + step * subGradient);
                // 更新步长
                step = lambda * (curUB - bestLB) / dist;
                // 迭代停止条件3
                if (step < minStep) {
    
    
                    System.out.println("Early stop: step (" + step + ") is less than minStep (" + minStep + ") !");
                    break;
                }
            } else {
    
    
                System.err.println("Lagrange relaxation problem has no solution!");
            }
        }
    }

    // 建立松弛问题模型
    private static void initRelaxModel() throws IloException {
    
    
        relaxProblemModel = new IloCplex();
        relaxProblemModel.setOut(null);
        // 声明4个整数变量
        intVars = relaxProblemModel.intVarArray(4, 0, 1);
        // 添加约束
        // 约束1:x1+x2<=1
        relaxProblemModel.addLe(relaxProblemModel.sum(intVars[0], intVars[1]), 1);
        // 约束2:x3+x4<=1
        relaxProblemModel.addLe(relaxProblemModel.sum(intVars[2], intVars[3]), 1);
    }

    // 根据mu,设置松弛问题模型的目标函数
    private static void setRelaxModelObjectiveBuMu(double mu) throws IloException {
    
    
        // 目标函数(省略了常数 10*mu)
        IloLinearNumExpr target = relaxProblemModel.linearNumExpr();
        target.addTerm(16 - 8 * mu, intVars[0]);
        target.addTerm(10 - 2 * mu, intVars[1]);
        target.addTerm(0 - mu, intVars[2]);
        target.addTerm(4 - 4 * mu, intVars[3]);
        if (relaxProblemModel.getObjective() == null) {
    
    
            relaxProblemModel.addMaximize(target);
        } else {
    
    
            relaxProblemModel.getObjective().setExpr(target);
        }
    }

    public static void main(String[] args) throws IloException {
    
    
        long s = System.currentTimeMillis();
        run();
        System.out.println("----------------------------- Solution -----------------------------");
        System.out.println("bestMu: " + bestMu);
        System.out.println("bestUB: " + bestUB);
        System.out.println("bestLB: " + bestLB);
        System.out.println("gap: " + String.format("%.2f", (bestUB - bestLB) * 100d / bestUB) + " %");
        System.out.println("bestX: " + Arrays.toString(bestX));
        System.out.println("Solve Time: " + (System.currentTimeMillis() - s) + " ms");
    }

}

程序输出:

----------------------------- Epoch-1 -----------------------------
mu: 0.0
lambda: 2.0
curUB: 20.0
subGradient: 2.0
bestUB: 20.0
bestLB: 0.0
gap: 100.00 %
----------------------------- Epoch-2 -----------------------------
mu: 2.0
lambda: 2.0
curUB: 26.0
subGradient: -8.0
bestUB: 20.0
bestLB: 10.0
gap: 50.00 %
----------------------------- Epoch-3 -----------------------------
mu: 0.0
lambda: 2.0
curUB: 20.0
subGradient: 2.0
bestUB: 20.0
bestLB: 10.0
gap: 50.00 %
----------------------------- Epoch-4 -----------------------------
mu: 1.0
lambda: 2.0
curUB: 18.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-5 -----------------------------
mu: 11.0
lambda: 2.0
curUB: 110.0
subGradient: -10.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-6 -----------------------------
mu: 0.0
lambda: 2.0
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-7 -----------------------------
mu: 4.0
lambda: 2.0
curUB: 42.0
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-8 -----------------------------
mu: 0.0
lambda: 1.0
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-9 -----------------------------
mu: 1.0
lambda: 1.0
curUB: 18.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-10 -----------------------------
mu: 6.0
lambda: 1.0
curUB: 60.0
subGradient: -10.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-11 -----------------------------
mu: 0.0
lambda: 0.5
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-12 -----------------------------
mu: 0.5
lambda: 0.5
curUB: 19.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-13 -----------------------------
mu: 3.0
lambda: 0.5
curUB: 34.0
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-14 -----------------------------
mu: 0.0
lambda: 0.25
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-15 -----------------------------
mu: 0.1875
lambda: 0.25
curUB: 19.625
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-16 -----------------------------
mu: 1.4375
lambda: 0.25
curUB: 21.5
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-17 -----------------------------
mu: 0.0
lambda: 0.125
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-18 -----------------------------
mu: 0.044921875
lambda: 0.125
curUB: 19.91015625
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-19 -----------------------------
mu: 0.669921875
lambda: 0.125
curUB: 18.66015625
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-20 -----------------------------
mu: 1.289306640625
lambda: 0.0625
curUB: 20.314453125
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-21 -----------------------------
mu: 0.206787109375
lambda: 0.0625
curUB: 19.58642578125
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-22 -----------------------------
mu: 0.22693252563476562
lambda: 0.0625
curUB: 19.54613494873047
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-23 -----------------------------
mu: 0.5265083312988281
lambda: 0.03125
curUB: 18.946983337402344
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-24 -----------------------------
mu: 0.6756666898727417
lambda: 0.03125
curUB: 18.648666620254517
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-25 -----------------------------
mu: 0.8154633045196533
lambda: 0.03125
curUB: 18.369073390960693
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-26 -----------------------------
mu: 0.9505987204611301
lambda: 0.015625
curUB: 18.09880255907774
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-27 -----------------------------
mu: 1.0159821063280106
lambda: 0.015625
curUB: 18.127856850624084
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-28 -----------------------------
mu: 0.7628945263568312
lambda: 0.015625
curUB: 18.474210947286338
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-29 -----------------------------
mu: 0.766863206459675
lambda: 0.0078125
curUB: 18.46627358708065
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-30 -----------------------------
mu: 0.7999655929725122
lambda: 0.0078125
curUB: 18.400068814054976
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-31 -----------------------------
mu: 0.833036974172046
lambda: 0.0078125
curUB: 18.333926051655908
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-32 -----------------------------
mu: 0.8658497429769483
lambda: 0.00390625
curUB: 18.268300514046103
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-33 -----------------------------
mu: 0.8821269422965887
lambda: 0.00390625
curUB: 18.235746115406823
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-34 -----------------------------
mu: 0.8982759667380851
lambda: 0.00390625
curUB: 18.20344806652383
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-35 -----------------------------
mu: 0.914361408369739
lambda: 0.001953125
curUB: 18.17127718326052
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-36 -----------------------------
mu: 0.9223725881222037
lambda: 0.001953125
curUB: 18.155254823755595
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-37 -----------------------------
mu: 0.9303523509964815
lambda: 0.001953125
curUB: 18.13929529800704
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-38 -----------------------------
mu: 0.9383164670353054
lambda: 9.765625E-4
curUB: 18.123367065929386
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-39 -----------------------------
mu: 0.9422907323175354
lambda: 9.765625E-4
curUB: 18.11541853536493
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-40 -----------------------------
mu: 0.9462572201426962
lambda: 9.765625E-4
curUB: 18.107485559714608
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
Early stop: step (9.896832958635996E-4) is less than minStep (0.001) !
----------------------------- Solution -----------------------------
bestMu: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
bestX: [0.0, 1.0, 0.0, 0.0]
Solve Time: 152 ms

分析:
从最终结果可以看到, bestLB 为10,也就是通过拉格朗日松弛&次梯度算法得到的最优可行解的目标值为10,这明显不是最优解(最优解应该是16, x 1 = 1 x_1=1 x1=1,其余变量为0)
这是因为我们松弛了一个约束,所以通过拉格朗日松弛&次梯度算法得到的解不一定是最优解。但是当遇到一些很难求解的模型,但又不需要去求解它的精确解时,拉格朗日松弛&次梯度算法就可以派上用场了!


参考链接:

猜你喜欢

转载自blog.csdn.net/weixin_51545953/article/details/129281753