YOLOv5实现双目测距【已跑通】

一、源码分享

踩过很多博主的坑,下载的代码基本都是错误的,各种报错,最终自己修改完善,直接下载使用即可:
源码链接点击这里

二、环境配置

此次修改过后,对环境版本无要求,只要是能跑yolov5的环境就行。

三、主要代码展示

以下是修改过的detect.py文件:

# -*- coding: utf-8 -*-
import argparse
import time
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random

import numpy as np
from PIL import Image, ImageDraw, ImageFont

from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
    scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized

from stereo.dianyuntu_yolo import preprocess, undistortion, getRectifyTransform, draw_line, rectifyImage, \
    stereoMatchSGBM, hw3ToN3, DepthColor2Cloud, view_cloud

from stereo import stereoconfig

num = 210  # 207 209 210 211


def detect(save_img=False):
    num = 210
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride)
        print("img_size:")
        print(imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{
      
      frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{
      
      n} {
      
      names[int(c)]} {
      
      's' * (n > 1)} , "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh

                        print("xywh  x : %d, y : %d" % (xywh[0], xywh[1]))
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        label = f'{
      
      names[int(cls)]} {
      
      conf:.2f} '
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
                        ##print label x,y zuobiao

                        x = (xyxy[0] + xyxy[2]) / 2
                        y = (xyxy[1] + xyxy[3]) / 2
                        # print(" %s is  x: %d y: %d " %(label,x,y) )
                        height_0, width_0 = im0.shape[0:2]

                        if (x <= int(width_0 / 2)):
                            t3 = time_synchronized()

                            ################################
                            # stereo code
                            p = num
                            string = ''
                            # print("P is %d" %p )
                            # 读取数据集的图片
                            # iml = cv2.imread('./stereo/yolo/zuo/%szuo%d.bmp' %(string,p) )  # 左图
                            # imr = cv2.imread('./stereo/yolo/you/%syou%d.bmp' %(string,p) )  # 右图

                            # iml = cv2.imread('./stereo/yolo/zuo/%szuo%d.bmp' %(string,p) )  # 左图
                            # imr = cv2.imread('./stereo/yolo/you/%syou%d.bmp' %(string,p) )  # 右图

                            # height_0, width_0 = im0.shape[0:2]

                            # print("width_0 =  %d "  % width_0)
                            # print("height_0 = %d "  % height_0)

                            iml = im0[0:int(height_0), 0:int(width_0 / 2)]
                            imr = im0[0:int(height_0), int(width_0 / 2):int(width_0)]

                            height, width = iml.shape[0:2]

                            # cv2.imshow("iml",iml)
                            # cv2.imshow("imr",im0)
                            # cv2.waitKey(0)

                            # print("width =  %d "  % width)
                            # print("height = %d "  % height)

                            # 读取相机内参和外参
                            config = stereoconfig.stereoCamera()

                            # 立体校正
                            map1x, map1y, map2x, map2y, Q = getRectifyTransform(height, width,
                                                                                config)  # 获取用于畸变校正和立体校正的映射矩阵以及用于计算像素空间坐标的重投影矩阵
                            # print("Print Q!")
                            # print("Q[2,3]:%.3f"%Q[2,3])
                            iml_rectified, imr_rectified = rectifyImage(iml, imr, map1x, map1y, map2x, map2y)

                            # 绘制等间距平行线,检查立体校正的效果
                            line = draw_line(iml_rectified, imr_rectified)
                            # cv2.imwrite('./yolo/%s检验%d.png' %(string,p), line)

                            # 消除畸变
                            iml = undistortion(iml, config.cam_matrix_left, config.distortion_l)
                            imr = undistortion(imr, config.cam_matrix_right, config.distortion_r)

                            # 立体匹配
                            iml_, imr_ = preprocess(iml, imr)  # 预处理,一般可以削弱光照不均的影响,不做也可以

                            iml_rectified_l, imr_rectified_r = rectifyImage(iml_, imr_, map1x, map1y, map2x, map2y)

                            disp, _ = stereoMatchSGBM(iml_rectified_l, imr_rectified_r, True)
                            # cv2.imwrite('./yolo/%s视差%d.png' %(string,p), disp)

                            # 计算像素点的3D坐标(左相机坐标系下)
                            points_3d = cv2.reprojectImageTo3D(disp, Q)  # 可以使用上文的stereo_config.py给出的参数

                            # points_3d = points_3d

                            '''
                            #print("x is :%.3f" %points_3d[int(y), int(x), 0] )
                                print('点 (%d, %d) 的三维坐标 (x:%.3fcm, y:%.3fcm, z:%.3fcm)' % (int(x), int(y), 
                                points_3d[int(y), int(x), 0]/10, 
                                points_3d[int(y), int(x), 1]/10, 
                                points_3d[int(y), int(x), 2]/10) )
                            '''
                            



                                # if(count%2==1):
                                #    x += 1
                                # else:
                                #    y += 1

                            text_cxy = "*"
                            #cv2.putText(im0, text_cxy, (x, y), cv2.FONT_ITALIC, 1.2, (0, 0, 255), 3)
                            cv2.putText(im0, text_cxy, (int(x), int(y)), cv2.FONT_ITALIC, 1.2, (0, 0, 255), 3)
                            # print("count is %d" %count)
                            print('点 (%d, %d) 的三维坐标 (x:%.1fcm, y:%.1fcm, z:%.1fcm)' % (int(x), int(y),
                                                                                       points_3d[
                                                                                           int(y), int(x), 0] / 10,
                                                                                       points_3d[
                                                                                           int(y), int(x), 1] / 10,
                                                                                       points_3d[
                                                                                           int(y), int(x), 2] / 10))

                            dis = ((points_3d[int(y), int(x), 0] ** 2 + points_3d[int(y), int(x), 1] ** 2 + points_3d[
                                int(y), int(x), 2] ** 2) ** 0.5) / 10
                            print('点 (%d, %d) 的 %s 距离左摄像头的相对距离为 %0.1f cm' % (x, y, label, dis))

                            text_x = "x:%.1fcm" % (points_3d[int(y), int(x), 0] / 10)
                            text_y = "y:%.1fcm" % (points_3d[int(y), int(x), 1] / 10)
                            text_z = "z:%.1fcm" % (points_3d[int(y), int(x), 2] / 10)
                            text_dis = "dis:%.1fcm" % dis

                            cv2.rectangle(im0, (int(xyxy[0] + (xyxy[2] - xyxy[0])), int(xyxy[1])),
                                          (int(xyxy[0] + (xyxy[2] - xyxy[0]) + 5 + 220), int(xyxy[1] + 150)),
                                          colors[int(cls)], -1)
                            cv2.putText(im0, text_x, (int(xyxy[0] + (xyxy[2] - xyxy[0]) + 5), int(xyxy[1] + 30)),
                                        cv2.FONT_ITALIC, 1.2, (255, 255, 255), 3)
                            cv2.putText(im0, text_y, (int(xyxy[0] + (xyxy[2] - xyxy[0]) + 5), int(xyxy[1] + 65)),
                                        cv2.FONT_ITALIC, 1.2, (255, 255, 255), 3)
                            cv2.putText(im0, text_z, (int(xyxy[0] + (xyxy[2] - xyxy[0]) + 5), int(xyxy[1] + 100)),
                                        cv2.FONT_ITALIC, 1.2, (255, 255, 255), 3)
                            cv2.putText(im0, text_dis, (int(xyxy[0] + (xyxy[2] - xyxy[0]) + 5), int(xyxy[1] + 145)),
                                        cv2.FONT_ITALIC, 1.2, (255, 255, 255), 3)

                            t4 = time_synchronized()
                            print(f'Done. ({
      
      t4 - t3:.3f}s)')

            # Print time (inference + NMS)
            print(f'{
      
      s}Done. ({
      
      t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{
      
      len(list(save_dir.glob('labels/*.txt')))} labels saved to {
      
      save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {
      
      save_dir}{
      
      s}")

    print(f'Done. ({
      
      time.time() - t0:.3f}s)')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default='last_dead_fish_1000.pt', help='model.pt path(s)')
    parser.add_argument('--source', type=str, default='./shuangmu_dead_fish_011.mp4',
                        help='source')  # file/folder, 0 for webcam
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    opt = parser.parse_args()
    print(opt)
    #check_requirements()

    with torch.no_grad():
        if opt.update:  # update all models (to fix SourceChangeWarning)
            for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
                detect()
                strip_optimizer(opt.weights)
        else:
            detect()


猜你喜欢

转载自blog.csdn.net/magicnnonn/article/details/129652579