ART的函数运行机制

类的加载

dalvik 的类加载的主要过程如下:

  1. app_process 作为 zygote server 通过 local socket 处理进程创建请求,zygote server 是在 ZygoteInit.main 函数里调用 ZygoteInit.runSelectLoop 监听。

  2. 接收到 zygote clientfork 请求之后,调用 ZygoteConnection.runOnce ,调用 Zygote.forkAndSpecialize 创建新进程

  3. 进程创建之后,由 ZygoteConnection.handleParentProc 来初始化进程,最终会调用 ActivityThread.main 函数

  4. ActivityThread.main -> ActivityThread.attach -> ActivityThread.bindApplication -> Activity.handleBindApplication,handleBindApplication 会初始化 BaseDexClassLoader

  5. 类的加载经过了 ClassLoader.loadClass->BaseDexClassLoader.findClass->DexPathList.findClass->DexFile.loadClassBinaryName->DexFile.defineClassNative->DexFile_defineClassNative (runtime/native/dalvik_system_DexFile.cc) 。

这个初始化过程, artdalvik 都是一样的。 artDexFile_defineClassNativeClassLinkerDefineClass 来加载类。

static jclass DexFile_defineClassNative(JNIEnv* env,
                                        jclass,
                                        jstring javaName,
                                        jobject javaLoader,
                                        jobject cookie,
                                        jobject dexFile) {
  std::vector<const DexFile*> dex_files;
  const OatFile* oat_file;
  if (!ConvertJavaArrayToDexFiles(env, cookie, /*out*/ dex_files, /*out*/ oat_file)) {
    VLOG(class_linker) << "Failed to find dex_file";
    DCHECK(env->ExceptionCheck());
    return nullptr;
  }

  ScopedUtfChars class_name(env, javaName);
  if (class_name.c_str() == nullptr) {
    VLOG(class_linker) << "Failed to find class_name";
    return nullptr;
  }
  const std::string descriptor(DotToDescriptor(class_name.c_str()));
  const size_t hash(ComputeModifiedUtf8Hash(descriptor.c_str()));
  for (auto& dex_file : dex_files) {
    const DexFile::ClassDef* dex_class_def =
        OatDexFile::FindClassDef(*dex_file, descriptor.c_str(), hash);
    if (dex_class_def != nullptr) {
      ScopedObjectAccess soa(env);
      ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
      StackHandleScope<1> hs(soa.Self());
      Handle<mirror::ClassLoader> class_loader(
          hs.NewHandle(soa.Decode<mirror::ClassLoader>(javaLoader)));
      ObjPtr<mirror::DexCache> dex_cache =
          class_linker->RegisterDexFile(*dex_file, class_loader.Get());
      if (dex_cache == nullptr) {
        // OOME or InternalError (dexFile already registered with a different class loader).
        soa.Self()->AssertPendingException();
        return nullptr;
      }
      ObjPtr<mirror::Class> result = class_linker->DefineClass(soa.Self(),
                                                               descriptor.c_str(),
                                                               hash,
                                                               class_loader,
                                                               *dex_file,
                                                               *dex_class_def);
      // Add the used dex file. This only required for the DexFile.loadClass API since normal
      // class loaders already keep their dex files live.
      class_linker->InsertDexFileInToClassLoader(soa.Decode<mirror::Object>(dexFile),
                                                 class_loader.Get());
      if (result != nullptr) {
        VLOG(class_linker) << "DexFile_defineClassNative returning " << result
                           << " for " << class_name.c_str();
        return soa.AddLocalReference<jclass>(result);
      }
    }
  }
  VLOG(class_linker) << "Failed to find dex_class_def " << class_name.c_str();
  return nullptr;
}

类的加载除了创建 Class 只外,还有加载类的字段和方法,这个由 ClassLinker::LoadClass 来完成。

void ClassLinker::LoadClass(Thread* self,
                            const DexFile& dex_file,
                            const DexFile::ClassDef& dex_class_def,
                            Handle<mirror::Class> klass) {
  const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
  if (class_data == nullptr) {
    return;  // no fields or methods - for example a marker interface
  }
  LoadClassMembers(self, dex_file, class_data, klass);
}

函数的执行

一旦类的加载完成,那么就可以调用类的成员函数了,之前的解释器运行机制那篇文章介绍过, Java 的执行是以 Method 为执行单元的,所以我们分析 art 的运行机制,其实就是分析 Method 的运行机制。

ActivityThread 是进程在启动的时候传类名,在进程启动之后,由 handleParentProc 执行 main 函数,因此第一个被执行的 java 函数是 ActivityThread.main

Process.ProcessStartResult startResult = Process.start("android.app.ActivityThread",  
                    app.processName, uid, uid, gids, debugFlags, mountExternal,  
                    app.info.targetSdkVersion, app.info.seinfo, null);

ActivityThread.main 是最终由 AndroidRuntime::callMain 执行。

status_t AndroidRuntime::callMain(const String8& className, jclass clazz,
    const Vector<String8>& args)
{
    JNIEnv* env;
    jmethodID methodId;

    ALOGD("Calling main entry %s", className.string());

    env = getJNIEnv();
    if (clazz == NULL || env == NULL) {
        return UNKNOWN_ERROR;
    }

    methodId = env->GetStaticMethodID(clazz, "main", "([Ljava/lang/String;)V");
    if (methodId == NULL) {
        ALOGE("ERROR: could not find method %s.main(String[])\n", className.string());
        return UNKNOWN_ERROR;
    }

    /*
     * We want to call main() with a String array with our arguments in it.
     * Create an array and populate it.
     */
    jclass stringClass;
    jobjectArray strArray;

    const size_t numArgs = args.size();
    stringClass = env->FindClass("java/lang/String");
    strArray = env->NewObjectArray(numArgs, stringClass, NULL);

    for (size_t i = 0; i < numArgs; i++) {
        jstring argStr = env->NewStringUTF(args[i].string());
        env->SetObjectArrayElement(strArray, i, argStr);
    }
    /*
    关键函数
    */
    env->CallStaticVoidMethod(clazz, methodId, strArray);
    return NO_ERROR;
}

实际会调用 JNINativeInterfaceCallStaticVoidMethod ,上面已经介绍过,该函数的定义在 runtime/jni_internal.cc 里。

  static void CallStaticVoidMethod(JNIEnv* env, jclass, jmethodID mid, ...) {
    va_list ap;
    va_start(ap, mid);
    ScopedVAArgs free_args_later(&ap);
    CHECK_NON_NULL_ARGUMENT_RETURN_VOID(mid);
    ScopedObjectAccess soa(env);
    /*
    关键函数
    */
    InvokeWithVarArgs(soa, nullptr, mid, ap);
  }

InvokeWithVarArgs 是执行函数的入口,定义在 runtime/reflection.cc ,最终是调用了 ArtMethod::Invoke

JValue InvokeWithVarArgs(const ScopedObjectAccessAlreadyRunnable& soa, jobject obj, jmethodID mid,
                         va_list args)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  // We want to make sure that the stack is not within a small distance from the
  // protected region in case we are calling into a leaf function whose stack
  // check has been elided.
  if (UNLIKELY(__builtin_frame_address(0) < soa.Self()->GetStackEnd())) {
    ThrowStackOverflowError(soa.Self());
    return JValue();
  }

  ArtMethod* method = jni::DecodeArtMethod(mid);
  bool is_string_init = method->GetDeclaringClass()->IsStringClass() && method->IsConstructor();
  if (is_string_init) {
    // Replace calls to String.<init> with equivalent StringFactory call.
    method = WellKnownClasses::StringInitToStringFactory(method);
  }
  ObjPtr<mirror::Object> receiver = method->IsStatic() ? nullptr : soa.Decode<mirror::Object>(obj);
  uint32_t shorty_len = 0;
  const char* shorty =
      method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
  JValue result;
  ArgArray arg_array(shorty, shorty_len);
  arg_array.BuildArgArrayFromVarArgs(soa, receiver, args);
  /*
  关键函数
  */
  InvokeWithArgArray(soa, method, &arg_array, &result, shorty);
  if (is_string_init) {
    // For string init, remap original receiver to StringFactory result.
    UpdateReference(soa.Self(), obj, result.GetL());
  }
  return result;
}

void InvokeWithArgArray(const ScopedObjectAccessAlreadyRunnable& soa,
                               ArtMethod* method, ArgArray* arg_array, JValue* result,
                               const char* shorty)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  uint32_t* args = arg_array->GetArray();
  if (UNLIKELY(soa.Env()->IsCheckJniEnabled())) {
    CheckMethodArguments(soa.Vm(), method->GetInterfaceMethodIfProxy(kRuntimePointerSize), args);
  }

  /*
  关键函数
  */
  method->Invoke(soa.Self(), args, arg_array->GetNumBytes(), result, shorty);
}

我们知道 ART 的运行模式是 AOT 的,在 apk 安装的时候,每个 DexMethod 都会由 dex2oat 编译成目标代码,而不再是虚拟机执行的字节码,但同时 Dex 字节码仍然还在 OAT 里存在,所以 ART 的代码执行既支持 QuickCompiledCode 模式,也同时支持解释器模式以及 JIT 执行模式。看 ArtMethod::Invoke

void ArtMethod::Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result,
                       const char* shorty) {
  if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEnd())) {
    ThrowStackOverflowError(self);
    return;
  }

  if (kIsDebugBuild) {
    self->AssertThreadSuspensionIsAllowable();
    CHECK_EQ(kRunnable, self->GetState());
    CHECK_STREQ(GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(), shorty);
  }

  // Push a transition back into managed code onto the linked list in thread.
  ManagedStack fragment;
  self->PushManagedStackFragment(&fragment);

  Runtime* runtime = Runtime::Current();
  // Call the invoke stub, passing everything as arguments.
  // If the runtime is not yet started or it is required by the debugger, then perform the
  // Invocation by the interpreter, explicitly forcing interpretation over JIT to prevent
  // cycling around the various JIT/Interpreter methods that handle method invocation.
  if (UNLIKELY(!runtime->IsStarted() || Dbg::IsForcedInterpreterNeededForCalling(self, this))) {
    /*
      Interpreter 模式
    */
    if (IsStatic()) {
      art::interpreter::EnterInterpreterFromInvoke(
          self, this, nullptr, args, result, /*stay_in_interpreter*/ true);
    } else {
      mirror::Object* receiver =
          reinterpret_cast<StackReference<mirror::Object>*>(&args[0])->AsMirrorPtr();
      art::interpreter::EnterInterpreterFromInvoke(
          self, this, receiver, args + 1, result, /*stay_in_interpreter*/ true);
    }
  } else {
    DCHECK_EQ(runtime->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);

    constexpr bool kLogInvocationStartAndReturn = false;
    bool have_quick_code = GetEntryPointFromQuickCompiledCode() != nullptr;
    if (LIKELY(have_quick_code)) {
      if (kLogInvocationStartAndReturn) {
        LOG(INFO) << StringPrintf(
            "Invoking '%s' quick code=%p static=%d", PrettyMethod().c_str(),
            GetEntryPointFromQuickCompiledCode(), static_cast<int>(IsStatic() ? 1 : 0));
      }

      // Ensure that we won't be accidentally calling quick compiled code when -Xint.
      if (kIsDebugBuild && runtime->GetInstrumentation()->IsForcedInterpretOnly()) {
        CHECK(!runtime->UseJitCompilation());
        const void* oat_quick_code =
            (IsNative() || !IsInvokable() || IsProxyMethod() || IsObsolete())
            ? nullptr
            : GetOatMethodQuickCode(runtime->GetClassLinker()->GetImagePointerSize());
        CHECK(oat_quick_code == nullptr || oat_quick_code != GetEntryPointFromQuickCompiledCode())
            << "Don't call compiled code when -Xint " << PrettyMethod();
      }

      /*
        OAT 模式
      */
      if (!IsStatic()) {
        (*art_quick_invoke_stub)(this, args, args_size, self, result, shorty);
      } else {
        (*art_quick_invoke_static_stub)(this, args, args_size, self, result, shorty);
      }
      if (UNLIKELY(self->GetException() == Thread::GetDeoptimizationException())) {
        // Unusual case where we were running generated code and an
        // exception was thrown to force the activations to be removed from the
        // stack. Continue execution in the interpreter.
        self->DeoptimizeWithDeoptimizationException(result);
      }
      if (kLogInvocationStartAndReturn) {
        LOG(INFO) << StringPrintf("Returned '%s' quick code=%p", PrettyMethod().c_str(),
                                  GetEntryPointFromQuickCompiledCode());
      }
    } else {
      LOG(INFO) << "Not invoking '" << PrettyMethod() << "' code=null";
      if (result != nullptr) {
        result->SetJ(0);
      }
    }
  }

  // Pop transition.
  self->PopManagedStackFragment(fragment);
}

Invoke 可以进入 OATInterpreter 模式执行 Method 。如果当前是 Interpreter 模式,就调用 art::interpreter::EnterInterpreterFromInvoke ,如果是 OAT 模式,就调用 art_quick_invoke_stub/art_quick_invoke_static_stub
EnterInterpreterFromInvoke 函数里会判断是 native 还是解释器执行。

void EnterInterpreterFromInvoke(Thread* self, ArtMethod* method, Object* receiver,
                                uint32_t* args, JValue* result) {
  DCHECK_EQ(self, Thread::Current());
  bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks();
  if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) {
    ThrowStackOverflowError(self);
    return;
  }
 
  const char* old_cause = self->StartAssertNoThreadSuspension("EnterInterpreterFromInvoke");
  const DexFile::CodeItem* code_item = method->GetCodeItem();
  uint16_t num_regs;
  uint16_t num_ins;
  if (code_item != nullptr) {
    num_regs =  code_item->registers_size_;
    num_ins = code_item->ins_size_;
  } else if (method->IsAbstract()) {
    self->EndAssertNoThreadSuspension(old_cause);
    ThrowAbstractMethodError(method);
    return;
  } else {
    DCHECK(method->IsNative());
    num_regs = num_ins = ArtMethod::NumArgRegisters(method->GetShorty());
    if (!method->IsStatic()) {
      num_regs++;
      num_ins++;
    }
  }
  // Set up shadow frame with matching number of reference slots to vregs.
  ShadowFrame* last_shadow_frame = self->GetManagedStack()->GetTopShadowFrame();
  void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
  ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, last_shadow_frame, method, 0, memory));
  self->PushShadowFrame(shadow_frame);
 
  size_t cur_reg = num_regs - num_ins;
  if (!method->IsStatic()) {
    CHECK(receiver != nullptr);
    shadow_frame->SetVRegReference(cur_reg, receiver);
    ++cur_reg;
  }
  uint32_t shorty_len = 0;
  const char* shorty = method->GetShorty(&shorty_len);
  for (size_t shorty_pos = 0, arg_pos = 0; cur_reg < num_regs; ++shorty_pos, ++arg_pos, cur_reg++) {
    DCHECK_LT(shorty_pos + 1, shorty_len);
    switch (shorty[shorty_pos + 1]) {
      case 'L': {
        Object* o = reinterpret_cast<StackReference<Object>*>(&args[arg_pos])->AsMirrorPtr();
        shadow_frame->SetVRegReference(cur_reg, o);
        break;
      }
      case 'J': case 'D': {
        uint64_t wide_value = (static_cast<uint64_t>(args[arg_pos + 1]) << 32) | args[arg_pos];
        shadow_frame->SetVRegLong(cur_reg, wide_value);
        cur_reg++;
        arg_pos++;
        break;
      }
      default:
        shadow_frame->SetVReg(cur_reg, args[arg_pos]);
        break;
    }
  }
  self->EndAssertNoThreadSuspension(old_cause);
  // Do this after populating the shadow frame in case EnsureInitialized causes a GC.
  if (method->IsStatic() && UNLIKELY(!method->GetDeclaringClass()->IsInitialized())) {
    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
    StackHandleScope<1> hs(self);
    Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass()));
    if (UNLIKELY(!class_linker->EnsureInitialized(self, h_class, true, true))) {
      CHECK(self->IsExceptionPending());
      self->PopShadowFrame();
      return;
    }
  }
  if (LIKELY(!method->IsNative())) {
    /*
      非 native 方法则调用下列函数
    */
    JValue r = Execute(self, code_item, *shadow_frame, JValue());
    if (result != nullptr) {
      *result = r;
    }
  } else {
    // We don't expect to be asked to interpret native code (which is entered via a JNI compiler
    // generated stub) except during testing and image writing.
    // Update args to be the args in the shadow frame since the input ones could hold stale
    // references pointers due to moving GC.
    args = shadow_frame->GetVRegArgs(method->IsStatic() ? 0 : 1);
    if (!Runtime::Current()->IsStarted()) {
      UnstartedRuntime::Jni(self, method, receiver, args, result);
    } else {
      InterpreterJni(self, method, shorty, receiver, args, result);
    }
  }
  self->PopShadowFrame();
}

这个函数前面部分都在做参数压栈操作,最后几行进入主题,如果不是 Native ,那么调用 Execute 执行; Native 函数则调用 InterpreterJniExecute 就是 art 的解释器代码, Dex 的字节码是通过 ArtMethod::GetCodeItem 函数获得,由 Execute 逐条执行。 InterpreterJni 通过 GetEntryPointFromJni 来获得 native 的函数,并执行。

if (LIKELY(!method->IsNative())) {
    JValue r = Execute(self, code_item, *shadow_frame, JValue());
    if (result != nullptr) {
      *result = r;
    }
  } else {
    // We don't expect to be asked to interpret native code (which is entered via a JNI compiler
    // generated stub) except during testing and image writing.
    // Update args to be the args in the shadow frame since the input ones could hold stale
    // references pointers due to moving GC.
    args = shadow_frame->GetVRegArgs(method->IsStatic() ? 0 : 1);
    if (!Runtime::Current()->IsStarted()) {
      UnstartedRuntime::Jni(self, method, receiver, args, result);
    } else {
      InterpreterJni(self, method, shorty, receiver, args, result);
    }
  }

再回调 OAT 的模式, art_quick_invoke_stub/art_quick_invoke_static_stub 最终会调用到 art_quick_invoke_stub_internal (arch/arm/quick_entrypoints_arm.S )。

ENTRY art_quick_invoke_stub_internal
    push   {r4, r5, r6, r7, r8, r9, r10, r11, lr}               @ spill regs
    .cfi_adjust_cfa_offset 16
    .cfi_rel_offset r4, 0
    .cfi_rel_offset r5, 4
    .cfi_rel_offset r6, 8
    .cfi_rel_offset r7, 12
    .cfi_rel_offset r8, 16
    .cfi_rel_offset r9, 20
    .cfi_rel_offset r10, 24
    .cfi_rel_offset r11, 28
    .cfi_rel_offset lr, 32
    mov    r11, sp                         @ save the stack pointer
    .cfi_def_cfa_register r11
 
    mov    r9, r3                          @ move managed thread pointer into r9
 
    add    r4, r2, #4                      @ create space for method pointer in frame
    sub    r4, sp, r4                      @ reserve & align *stack* to 16 bytes: native calling
    and    r4, #0xFFFFFFF0                 @ convention only aligns to 8B, so we have to ensure ART
    mov    sp, r4                          @ 16B alignment ourselves.
 
    mov    r4, r0                          @ save method*
    add    r0, sp, #4                      @ pass stack pointer + method ptr as dest for memcpy
    bl     memcpy                          @ memcpy (dest, src, bytes)
    mov    ip, #0                          @ set ip to 0
    str    ip, [sp]                        @ store null for method* at bottom of frame
 
    ldr    ip, [r11, #48]                  @ load fp register argument array pointer
    vldm   ip, {s0-s15}                    @ copy s0 - s15
 
    ldr    ip, [r11, #44]                  @ load core register argument array pointer
    mov    r0, r4                          @ restore method*
    add    ip, ip, #4                      @ skip r0
    ldm    ip, {r1-r3}                     @ copy r1 - r3
#ifdef ARM_R4_SUSPEND_FLAG
    mov    r4, #SUSPEND_CHECK_INTERVAL     @ reset r4 to suspend check interval
#endif
 
    ldr    ip, [r0, #ART_METHOD_QUICK_CODE_OFFSET_32]  @ get pointer to the code
    blx    ip                              @ call the method
 
    mov    sp, r11                         @ restore the stack pointer
    .cfi_def_cfa_register sp
 
    ldr    r4, [sp, #40]                   @ load result_is_float
    ldr    r9, [sp, #36]                   @ load the result pointer
    cmp    r4, #0
    ite    eq
    strdeq r0, [r9]                        @ store r0/r1 into result pointer
    vstrne d0, [r9]                        @ store s0-s1/d0 into result pointer
 
    pop    {r4, r5, r6, r7, r8, r9, r10, r11, pc}               @ restore spill regs
END art_quick_invoke_stub_internal

找到 ArtMethodentry_point_from_quick_compiled_code_ 字段,这个就是 EntryPointFromQuickCompiledCode ,从而进入OAT函数执行。

#define ART_METHOD_QUICK_CODE_OFFSET_32 36
ADD_TEST_EQ(ART_METHOD_QUICK_CODE_OFFSET_32,
            art::ArtMethod::EntryPointFromQuickCompiledCodeOffset(4).Int32Value())

EntryPointFromQuickCompiledCode 的初始化在 class_linkerLoadClassMembers 时调用的 LinkCode ,有下面几种类型

  1. SetEntryPointFromQuickCompiledCode(GetQuickCode()); // 这个是执行OatMethod

  2. SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); // Dex Method

  3. SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub()); // Native Method

  4. SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub()); // method->IsStatic() && !method->IsConstructor()

如果是强制使用了解释器模式,那么执行的是代码 GetQuickToInterpreterBridge(non-static, non-native)GetQuickGenericJniStub(non-static, native)GetQuickResolutionStub(static) ,这几个 EntryPoint 对应的实际执行函数如下。

GetQuickGenericJniStub —  artQuickGenericJniTrampoline

GetQuickResolutionStub —  artQuickResolutionTrampoline

GetQuickToInterpreterBridge —  artQuickToInterpreterBridge

ArtMthodResolve 之后,如果是走 Oat 模式就会执行 GetQuickCode

以上是 EntryPointFromQuickCompiledCode 的情况。

不同的执行模式有不同的 EntryPoint

  1. 解释器 - EntryPointFromInterpreter

    interpreter/interpreter_common.cc 里会在执行解释器函数时,会获得 ArtMethodInterpret EntryPoint 执行

  2. Jni - EntryPointFromJni

    interpreter/interpreter.ccInterpreterJni 函数会获得 ArtMethod的Jni EntryPoint 执行

  3. Oat - EntryPointFromQuickCompiledCode

    DexCacheInit 的时候会将 Method 都初始化为 ResolutionMethod ,这个 Resolution Method 是没有 dex method id 的,是个 RuntimeMethod ,这是 lazy load method ,运行时 resolve 之后才会替换成实际的 ArtMethod

void DexCache::Init(const DexFile* dex_file, String* location, ObjectArray<String>* strings,
                    ObjectArray<Class>* resolved_types, PointerArray* resolved_methods,
                    PointerArray* resolved_fields, size_t pointer_size) {
  CHECK(dex_file != nullptr);
  CHECK(location != nullptr);
  CHECK(strings != nullptr);
  CHECK(resolved_types != nullptr);
  CHECK(resolved_methods != nullptr);
  CHECK(resolved_fields != nullptr);
 
  SetDexFile(dex_file);
  SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(DexCache, location_), location);
  SetFieldObject<false>(StringsOffset(), strings);
  SetFieldObject<false>(ResolvedFieldsOffset(), resolved_fields);
  SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(DexCache, resolved_types_), resolved_types);
  SetFieldObject<false>(ResolvedMethodsOffset(), resolved_methods);
 
  Runtime* const runtime = Runtime::Current();
  if (runtime->HasResolutionMethod()) {
    // Initialize the resolve methods array to contain trampolines for resolution.
    Fixup(runtime->GetResolutionMethod(), pointer_size);
  }
}
 
void DexCache::Fixup(ArtMethod* trampoline, size_t pointer_size) {
  // Fixup the resolve methods array to contain trampoline for resolution.
  CHECK(trampoline != nullptr);
  CHECK(trampoline->IsRuntimeMethod());
  auto* resolved_methods = GetResolvedMethods();
  for (size_t i = 0, length = resolved_methods->GetLength(); i < length; i++) {
    if (resolved_methods->GetElementPtrSize<ArtMethod*>(i, pointer_size) == nullptr) {
      resolved_methods->SetElementPtrSize(i, trampoline, pointer_size);
    }
  }
}

resolution methodEntryPointFromQuickCompiledCode 指向 GetQuickResolutionStub ,意思就是一开始,这些函数的执行点都是从 artQuickResolutionTrampoline 开始。

// Lazily resolve a method for quick. Called by stub code.
extern "C" const void* artQuickResolutionTrampoline(
    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  ScopedQuickEntrypointChecks sqec(self);
  // Start new JNI local reference state
  JNIEnvExt* env = self->GetJniEnv();
  ScopedObjectAccessUnchecked soa(env);
  ScopedJniEnvLocalRefState env_state(env);
  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
 
  // Compute details about the called method (avoid GCs)
  ClassLinker* linker = Runtime::Current()->GetClassLinker();
  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
  InvokeType invoke_type;
  MethodReference called_method(nullptr, 0);
  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
  if (!called_method_known_on_entry) {
    uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
    const DexFile::CodeItem* code;
    called_method.dex_file = caller->GetDexFile();
    code = caller->GetCodeItem();
    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
    Instruction::Code instr_code = instr->Opcode();
    bool is_range;
    switch (instr_code) {
      case Instruction::INVOKE_DIRECT:
        invoke_type = kDirect;
        is_range = false;
        break;
      case Instruction::INVOKE_DIRECT_RANGE:
        invoke_type = kDirect;
        is_range = true;
        break;
      case Instruction::INVOKE_STATIC:
        invoke_type = kStatic;
        is_range = false;
        break;
      case Instruction::INVOKE_STATIC_RANGE:
        invoke_type = kStatic;
        is_range = true;
        break;
      case Instruction::INVOKE_SUPER:
        invoke_type = kSuper;
        is_range = false;
        break;
      case Instruction::INVOKE_SUPER_RANGE:
        invoke_type = kSuper;
        is_range = true;
        break;
      case Instruction::INVOKE_VIRTUAL:
        invoke_type = kVirtual;
        is_range = false;
        break;
      case Instruction::INVOKE_VIRTUAL_RANGE:
        invoke_type = kVirtual;
        is_range = true;
        break;
      case Instruction::INVOKE_INTERFACE:
        invoke_type = kInterface;
        is_range = false;
        break;
      case Instruction::INVOKE_INTERFACE_RANGE:
        invoke_type = kInterface;
        is_range = true;
        break;
      default:
        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
        UNREACHABLE();
    }
    called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
  } else {
    invoke_type = kStatic;
    called_method.dex_file = called->GetDexFile();
    called_method.dex_method_index = called->GetDexMethodIndex();
  }
  uint32_t shorty_len;
  const char* shorty =
      called_method.dex_file->GetMethodShorty(
          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
  visitor.VisitArguments();
  self->EndAssertNoThreadSuspension(old_cause);
  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
  // Resolve method filling in dex cache.
  if (!called_method_known_on_entry) {
    StackHandleScope<1> hs(self);
    mirror::Object* dummy = nullptr;
    HandleWrapper<mirror::Object> h_receiver(
        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
    called = linker->ResolveMethod(self, called_method.dex_method_index, caller, invoke_type);
  }
  const void* code = nullptr;
  if (LIKELY(!self->IsExceptionPending())) {
    // Incompatible class change should have been handled in resolve method.
    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
        << PrettyMethod(called) << " " << invoke_type;
    if (virtual_or_interface) {
      // Refine called method based on receiver.
      CHECK(receiver != nullptr) << invoke_type;
 
      ArtMethod* orig_called = called;
      if (invoke_type == kVirtual) {
        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*));
      } else {
        called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*));
      }
 
      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
                               << PrettyTypeOf(receiver) << " "
                               << invoke_type << " " << orig_called->GetVtableIndex();
 
      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
      // of the sharpened method avoiding dirtying the dex cache if possible.
      // Note, called_method.dex_method_index references the dex method before the
      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
      // about the name and signature.
      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
      if (!called->HasSameDexCacheResolvedMethods(caller)) {
        // Calling from one dex file to another, need to compute the method index appropriate to
        // the caller's dex file. Since we get here only if the original called was a runtime
        // method, we've got the correct dex_file and a dex_method_idx from above.
        DCHECK(!called_method_known_on_entry);
        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
        const DexFile* caller_dex_file = called_method.dex_file;
        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
        update_dex_cache_method_index =
            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
                                                     caller_method_name_and_sig_index);
      }
      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
          (caller->GetDexCacheResolvedMethod(
              update_dex_cache_method_index, sizeof(void*)) != called)) {
        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*));
      }
    } else if (invoke_type == kStatic) {
      const auto called_dex_method_idx = called->GetDexMethodIndex();
      // For static invokes, we may dispatch to the static method in the superclass but resolve
      // using the subclass. To prevent getting slow paths on each invoke, we force set the
      // resolved method for the super class dex method index if we are in the same dex file.
      // b/19175856
      if (called->GetDexFile() == called_method.dex_file &&
          called_method.dex_method_index != called_dex_method_idx) {
        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*));
      }
    }
 
    // Ensure that the called method's class is initialized.
    StackHandleScope<1> hs(soa.Self());
    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
    linker->EnsureInitialized(soa.Self(), called_class, true, true);
    if (LIKELY(called_class->IsInitialized())) {
      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
        // If we are single-stepping or the called method is deoptimized (by a
        // breakpoint, for example), then we have to execute the called method
        // with the interpreter.
        code = GetQuickToInterpreterBridge();
      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
        // If the caller is deoptimized (by a breakpoint, for example), we have to
        // continue its execution with interpreter when returning from the called
        // method. Because we do not want to execute the called method with the
        // interpreter, we wrap its execution into the instrumentation stubs.
        // When the called method returns, it will execute the instrumentation
        // exit hook that will determine the need of the interpreter with a call
        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
        // it is needed.
        code = GetQuickInstrumentationEntryPoint();
      } else {
        code = called->GetEntryPointFromQuickCompiledCode();
      }
    } else if (called_class->IsInitializing()) {
      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
        // If we are single-stepping or the called method is deoptimized (by a
        // breakpoint, for example), then we have to execute the called method
        // with the interpreter.
        code = GetQuickToInterpreterBridge();
      } else if (invoke_type == kStatic) {
        // Class is still initializing, go to oat and grab code (trampoline must be left in place
        // until class is initialized to stop races between threads).
        code = linker->GetQuickOatCodeFor(called);
      } else {
        // No trampoline for non-static methods.
        code = called->GetEntryPointFromQuickCompiledCode();
      }
    } else {
      DCHECK(called_class->IsErroneous());
    }
  }
  CHECK_EQ(code == nullptr, self->IsExceptionPending());
  // Fixup any locally saved objects may have moved during a GC.
  visitor.FixupReferences();
  // Place called method in callee-save frame to be placed as first argument to quick method.
  *sp = called;
 
  return code;
}

上面代码可知,找到当前 ArtMethod 的流程大致的逻辑就是,根据 caller 函数 ArtMethoddex 代码,可以找到这个 ArtMethod 的函数调用类型(INVOKE_DIRECT, INVOKE_STATIC, INVOKE_SUPER, INVOKE_VIRTUAL etc.),不同的类型查找的方式不一样,比如 Virtual Method 要从虚表里找,Super Method 要从父类的 Method 里去找,找到之后调用 ClassLinkerResolveMethod 来解析,解析出来的 ArtMethod 的就是上面 LinkCode 过的 ArtMethod
下面就是 ResolveMethod 函数的实现, Calss 查找到 Method ,之后在赋值到 DexCache 里,这样下次再执行就能直接找到 Resolved Method

ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file, uint32_t method_idx,
                                      Handle<mirror::DexCache> dex_cache,
                                      Handle<mirror::ClassLoader> class_loader,
                                      ArtMethod* referrer, InvokeType type) {
  DCHECK(dex_cache.Get() != nullptr);
  // Check for hit in the dex cache.
  ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_);
  if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
    DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
    return resolved;
  }
  // Fail, get the declaring class.
  const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
  mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
  if (klass == nullptr) {
    DCHECK(Thread::Current()->IsExceptionPending());
    return nullptr;
  }
  // Scan using method_idx, this saves string compares but will only hit for matching dex
  // caches/files.
  switch (type) {
    case kDirect:  // Fall-through.
    case kStatic:
      resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_);
      DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
      break;
    case kInterface:
      resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
      DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
      break;
    case kSuper:  // Fall-through.
    case kVirtual:
      resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
      break;
    default:
      LOG(FATAL) << "Unreachable - invocation type: " << type;
      UNREACHABLE();
  }
  if (resolved == nullptr) {
    // Search by name, which works across dex files.
    const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
    const Signature signature = dex_file.GetMethodSignature(method_id);
    switch (type) {
      case kDirect:  // Fall-through.
      case kStatic:
        resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
        DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
        break;
      case kInterface:
        resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
        DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
        break;
      case kSuper:  // Fall-through.
      case kVirtual:
        resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
        break;
    }
  }
  // If we found a method, check for incompatible class changes.
  if (LIKELY(resolved != nullptr && !resolved->CheckIncompatibleClassChange(type))) {
    // Be a good citizen and update the dex cache to speed subsequent calls.
    dex_cache->SetResolvedMethod(method_idx, resolved, image_pointer_size_);
    return resolved;
  } else {
    // If we had a method, it's an incompatible-class-change error.
    if (resolved != nullptr) {
      ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
    } else {
      // We failed to find the method which means either an access error, an incompatible class
      // change, or no such method. First try to find the method among direct and virtual methods.
      const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
      const Signature signature = dex_file.GetMethodSignature(method_id);
      switch (type) {
        case kDirect:
        case kStatic:
          resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
          // Note: kDirect and kStatic are also mutually exclusive, but in that case we would
          //       have had a resolved method before, which triggers the "true" branch above.
          break;
        case kInterface:
        case kVirtual:
        case kSuper:
          resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
          break;
      }
 
      // If we found something, check that it can be accessed by the referrer.
      bool exception_generated = false;
      if (resolved != nullptr && referrer != nullptr) {
        mirror::Class* methods_class = resolved->GetDeclaringClass();
        mirror::Class* referring_class = referrer->GetDeclaringClass();
        if (!referring_class->CanAccess(methods_class)) {
          ThrowIllegalAccessErrorClassForMethodDispatch(referring_class, methods_class, resolved,
                                                        type);
          exception_generated = true;
        } else if (!referring_class->CanAccessMember(methods_class, resolved->GetAccessFlags())) {
          ThrowIllegalAccessErrorMethod(referring_class, resolved);
          exception_generated = true;
        }
      }
      if (!exception_generated) {
        // Otherwise, throw an IncompatibleClassChangeError if we found something, and check
        // interface methods and throw if we find the method there. If we find nothing, throw a
        // NoSuchMethodError.
        switch (type) {
          case kDirect:
          case kStatic:
            if (resolved != nullptr) {
              ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
            } else {
              resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
              if (resolved != nullptr) {
                ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
              } else {
                ThrowNoSuchMethodError(type, klass, name, signature);
              }
            }
            break;
          case kInterface:
            if (resolved != nullptr) {
              ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
            } else {
              resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
              if (resolved != nullptr) {
                ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
              } else {
                ThrowNoSuchMethodError(type, klass, name, signature);
              }
            }
            break;
          case kSuper:
            if (resolved != nullptr) {
              ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
            } else {
              ThrowNoSuchMethodError(type, klass, name, signature);
            }
            break;
          case kVirtual:
            if (resolved != nullptr) {
              ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
            } else {
              resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
              if (resolved != nullptr) {
                ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
              } else {
                ThrowNoSuchMethodError(type, klass, name, signature);
              }
            }
            break;
        }
      }
    }
    Thread::Current()->AssertPendingException();
    return nullptr;
  }
}

至此,Art Method 的执行机制就算介绍完了,我们对整个函数执行机制都有个全局的概念了。

参考

https://blog.csdn.net/threepigs/article/details/52884904

https://www.jianshu.com/p/2ff1b63f686b

猜你喜欢

转载自blog.csdn.net/RFZ_322/article/details/125297763
今日推荐