【点云上采样】三维点云特征上采样

        一维和二维数据上采样通常是通过插值的方法来增加点的个数。三维点云上采样理论上也可以通过这个方法来进行。这些上采样的方法均是增加点的数量。但三维空间中点的分布并不是很均匀,不便于定义插值点的位置。因此,本节主要是针对于点云的特征进行上采样,增加的不是点的数量,而是点的特征维度,来源于PointNet++。

         一维和二维数据上采样通常是通过插值的方法来增加点的个数。三维点云上采样理论上也可以通过这个方法来进行。这些上采样的方法均是增加点的数量。但三维空间中点的分布并不是很均匀,不便于定义插值点的位置。因此,本节主要是针对于点云的特征进行上采样,增加的不是点的数量,而是点的特征维度,来源于PointNet++。

1 点云特征上采样实现原理

        PointNet++的上采样是通过插值来实现的,并且插值依赖于前后两层特征。假设前一层的点数N=64,后一层点数S=16,那么插值的任务就是把后一层的点数插值成64。主要步骤如下:

        (1)以前一层的64个点为参考点,分别计算这64个点和待插值的16个点的距离,得到64x16的距离矩阵。

        (2)分别在待插值的16个点中选择k=3个最接近各个参考点的点,然后将这k个点特征的加权平均值作为插值点的特征。每个参考点都会得到一个新的特征,新的特征来自于后一层点特征的加权平均。加权系数等于各个点的距离倒数除以3个点的距离倒数之和。距离越近,加权系数越大。

        插值的效果直观描述为:使得前一层的点数能够获得类似后一层的特征

2 示例代码

        示例代码中B代表Batch数量,对于单个数据B=1,设置为大于1的值时可以进行批量操作。N和S分别对应前一层和后一层的点数,D1和D2为对应的特征维度。从代码中可以看到,通常插值后的特征维度会进行拼接,即维度为D1+D2。为了使特征维度保持为D2,相应做法是加一层(D1+D2, D2)的卷积操作即可。

def point_feature_upsample(self, xyz1, xyz2, points1, points2):
    """
    Input:
        xyz1: input points position data, [B, 3, N]
        xyz2: sampled input points position data, [B, 3, S]
        points1: input points data, [B, D1, N]
        points2: input points data, [B, D2, S]
    Return:
        new_points: upsampled points data, [B, D1+D2, N]
    """
    xyz1 = xyz1.permute(0, 2, 1)
    xyz2 = xyz2.permute(0, 2, 1)

    points2 = points2.permute(0, 2, 1)
    B, N, C = xyz1.shape
    _, S, _ = xyz2.shape

    if S == 1:
        interpolated_points = points2.repeat(1, N, 1)
    else:
        dists = square_distance(xyz1, xyz2)
        dists, idx = dists.sort(dim=-1)
        dists, idx = dists[:, :, :3], idx[:, :, :3]  # [B, N, 3]

        dist_recip = 1.0 / (dists + 1e-8)
        norm = torch.sum(dist_recip, dim=2, keepdim=True)
        weight = dist_recip / norm
        interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2)

    if points1 is not None:
        points1 = points1.permute(0, 2, 1)
        new_points = torch.cat([points1, interpolated_points], dim=-1)
    else:
        new_points = interpolated_points

    new_points = new_points.permute(0, 2, 1)
    return new_points

def square_distance(src, dst):
    """
    Calculate Euclid distance between each two points.

    src^T * dst = xn * xm + yn * ym + zn * zm;
    sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
    sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
    dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
         = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst

    Input:
        src: source points, [B, N, C]
        dst: target points, [B, M, C]
    Output:
        dist: per-point square distance, [B, N, M]
    """
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
    dist += torch.sum(src ** 2, -1).view(B, N, 1)
    dist += torch.sum(dst ** 2, -1).view(B, 1, M)
    return dist

def index_points(points, idx):
    """

    Input:
        points: input points data, [B, N, C]
        idx: sample index data, [B, S]
    Return:
        new_points:, indexed points data, [B, S, C]
    """
    device = points.device
    B = points.shape[0]
    view_shape = list(idx.shape)
    view_shape[1:] = [1] * (len(view_shape) - 1)
    repeat_shape = list(idx.shape)
    repeat_shape[0] = 1
    batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
    new_points = points[batch_indices, idx, :]
    return new_points

 更多三维、二维感知算法和金融量化分析算法请关注“乐乐感知学堂”微信公众号,并将持续进行更新。

猜你喜欢

转载自blog.csdn.net/suiyingy/article/details/125037891