信号处理中的求导

本文对信号处理中一些常用的求导作以记录,如有表述不当之处欢迎批评指正。欢迎任何形式的转载,但请务必注明出处。

1. 实值函数相对于复变量的梯度

  a. 定义 f ( w ) f(w) f(w)是复变量 w w w的实函数;
  b. 其中 w w w w ∗ w^{*} w分别表示为: w = x + j y w=x+jy w=x+jy w ∗ = x − j y w^{*}=x-jy w=xjy
  c. 那么: ∂ f ∂ w = 1 2 ( ∂ f ∂ x − j ∂ f ∂ y ) \frac{\partial{f}}{\partial{w}}=\frac{1}{2}(\frac{\partial{f}}{\partial{x}}-j\frac{\partial{f}}{\partial{y}}) wf=21(xfjyf) ∂ f ∂ w ∗ = 1 2 ( ∂ f ∂ x + j ∂ f ∂ y ) \frac{\partial{f}}{\partial{w^{*}}}=\frac{1}{2}(\frac{\partial{f}}{\partial{x}}+j\frac{\partial{f}}{\partial{y}}) wf=21(xf+jyf) ∂ w ∂ w = 1 \frac{\partial{w}}{\partial{w}}=1 ww=1 ∂ w ∂ w ∗ = 0 \frac{\partial{w}}{\partial{w^{*}}}=0 ww=0

2. 标量函数相对于复向量的梯度

  a. 定义 f ( w ⃗ ) f(\vec{\bm{w}}) f(w )是复向量 w ⃗ \vec{\bm{w}} w 的标量函数;
  b. 其中 w ⃗ = [ w 0 , . . . , w M − 1 ] T \vec{\bm{w}}=[w_0,...,w_{M-1}]^{T} w =[w0,...,wM1]T w n = x n + j y n w_n=x_n+jy_n wn=xn+jyn
  c. 那么
∂ f ∂ w ⃗ = ∇ w ⃗ f ( w ⃗ ) = [ ∂ f ∂ w 0 , . . . , ∂ f ∂ w M − 1 ] T \frac{\partial{f}}{\partial{\vec{\bm{w}}}}=\nabla_{\vec{\bm{w}}}f(\vec{\bm{w}})=[\frac{\partial{f}}{\partial{w_0}},...,\frac{\partial{f}}{\partial{w_{M-1}}}]^{T} w f=w f(w )=[w0f,...,wM1f]T ∂ f ∂ w ∗ ⃗ = ∇ w ∗ ⃗ f ( w ⃗ ) = [ ∂ f ∂ w 0 ∗ , . . . , ∂ f ∂ w M − 1 ∗ ] T \frac{\partial{f}}{\partial{\vec{\bm{w^{*}}}}}=\nabla_{\vec{\bm{w^{*}}}}f(\vec{\bm{w}})=[\frac{\partial{f}}{\partial{w_0^{*}}},...,\frac{\partial{f}}{\partial{w_{M-1}^{*}}}]^{T} w f=w f(w )=[w0f,...,wM1f]T

3. 向量函数相对于复向量的梯度

  a. 定义 f ⃗ \vec{\bm{f}} f 是复向量 w ⃗ \vec{\bm{w}} w 的向量函数
  b. 其中
f ⃗ = [ f 0 ( w ⃗ ) , . . . , f M − 1 ( w ⃗ ) ] T \vec{\bm{f}}=[f_0(\vec{\bm{w}}),...,f_{M-1}(\vec{\bm{w}})]^{T} f =[f0(w ),...,fM1(w )]T w ⃗ = [ w 0 , . . . , w M − 1 ] T \vec{\bm{w}}=[w_0,...,w_{M-1}]^{T} w =[w0,...,wM1]T w n = x n + j y n w_n = x_n + jy_n wn=xn+jyn
  c. 那么
∂ f ⃗ ∂ w ⃗ = [ ∂ f 0 ∂ w 0 , . . . , ∂ f 0 ∂ w M − 1 ∂ f 1 ∂ w 0 , . . . , ∂ f 1 ∂ w M − 1 . . . . . . . . . ∂ f M − 1 ∂ w 0 , . . . , ∂ f M − 1 ∂ w M − 1 ] \frac{\partial{\vec{\bm{f}}}}{\partial{\vec{\bm{w}}}}=\begin{bmatrix} \frac{\partial{f_0}}{\partial{w_0}},...,\frac{\partial{f_0}}{\partial{w_{M-1}}} \\ \frac{\partial{f_1}}{\partial{w_0}},...,\frac{\partial{f_1}}{\partial{w_{M-1}}} \\ ......... \\ \frac{\partial{f_{M-1}}}{\partial{w_0}},...,\frac{\partial{f_{M-1}}}{\partial{w_{M-1}}} \end{bmatrix} w f =w0f0,...,wM1f0w0f1,...,wM1f1.........w0fM1,...,wM1fM1
  d. 结合上述概念可得到 ∂ f ⃗ ∂ w ∗ ⃗ \frac{\partial{\vec{\bm{f}}}}{\partial{\vec{\bm{w^{*}}}}} w f

4. 关于复变量/向量的一些结论

  a. 定义 ∇ = ( ∂ ∂ z 0 ∗ , . . . , ∂ ∂ z N − 1 ∗ ) T \nabla=(\frac{\partial}{\partial{z_0^{*}}},...,\frac{\partial}{\partial{z_{N-1}^{*}}})^{T} =(z0,...,zN1)T z n = x n + j y n z_n=xn+jy_n zn=xn+jyn n = 0 , . . . , N − 1 n=0,...,N-1 n=0,...,N1
  b. ∂ ∂ z n ∗ = 1 2 ( ∂ ∂ x n + j ∂ ∂ y n ) \frac{\partial}{\partial{z_n^{*}}}=\frac{1}{2}(\frac{\partial}{\partial{x_n}}+j\frac{\partial}{\partial{y_n}}) zn=21(xn+jyn) z n = x n + j y n z_n=xn+jy_n zn=xn+jyn n = 0 , . . . , N − 1 n=0,...,N-1 n=0,...,N1
  c.
{ ∂ z ∂ z ∗ = 0 ∂ z ∂ z = 1 ∂ z ∗ ∂ z ∗ = 1 \begin{cases} \frac{\partial{z}}{\partial{z^{*}}}=0\\ \frac{\partial{z}}{\partial{z}}=1\\ \frac{\partial{z^{*}}}{\partial{z^{*}}}=1 \end{cases} zz=0zz=1zz=1
  d.
{ ∇ ( a ⃗ H z ⃗ ) = 0 ∇ ( z ⃗ H a ⃗ ) = a ⃗ ∇ ( z ⃗ H R ⃗ z ⃗ ) = R ⃗ z ⃗ \begin{cases} \nabla(\vec{\bm{a}}^{H}\vec{\bm{z}}) = 0\\ \nabla(\vec{\bm{z}}^{H}\vec{\bm{a}}) = \vec{\bm{a}}\\ \nabla(\vec{\bm{z}}^{H}\vec{\bm{R}}\vec{\bm{z}}) = \vec{\bm{R}}\vec{\bm{z}}\\ \end{cases} (a Hz )=0(z Ha )=a (z HR z )=R z
  其中 a ⃗ \vec{\bm{a}} a z ⃗ \vec{\bm{z}} z 均为列向量, R ⃗ \vec{\bm{R}} R 为矩阵
  e.
f ( w ⃗ ) = p ⃗ H w ⃗ ⇒ { ∂ f ∂ w ⃗ = p ⃗ ∗ ∂ f ∂ w ⃗ ∗ = 0 f(\vec{\bm{w}})=\vec{\bm{p}}^{H}\vec{\bm{w}}\Rightarrow \begin{cases} \frac{\partial{f}}{\partial{\vec{\bm{w}}}}=\vec{\bm{p}}^{*}\\ \frac{\partial{f}}{\partial{\vec{\bm{w}}^{*}}}=0 \end{cases} f(w )=p Hw { w f=p w f=0
  其中 p ⃗ \vec{\bm{p}} p w ⃗ \vec{\bm{w}} w 均为列向量, f ( w ⃗ ) f(\vec{\bm{w}}) f(w )为标量
  f.
f ( w ⃗ ) = w ⃗ H p ⃗ ⇒ { ∂ f ∂ w ⃗ = 0 ∂ f ∂ w ⃗ ∗ = p ⃗ f(\vec{\bm{w}})=\vec{\bm{w}}^{H}\vec{\bm{p}}\Rightarrow \begin{cases} \frac{\partial{f}}{\partial{\vec{\bm{w}}}}=0\\ \frac{\partial{f}}{\partial{\vec{\bm{w}}^{*}}}=\vec{\bm{p}} \end{cases} f(w )=w Hp { w f=0w f=p
  其中 p ⃗ \vec{\bm{p}} p w ⃗ \vec{\bm{w}} w 均为列向量, f ( w ⃗ ) f(\vec{\bm{w}}) f(w )为标量
  g.
f ( w ⃗ ) = w ⃗ H A ⃗ w ⃗ ⇒ { ∂ f ∂ w ⃗ = A ⃗ T w ⃗ ∗ ∂ f ∂ w ⃗ ∗ = A ⃗ w ⃗ f(\vec{\bm{w}})=\vec{\bm{w}}^{H}\vec{\bm{A}}\vec{\bm{w}}\Rightarrow \begin{cases} \frac{\partial{f}}{\partial{\vec{\bm{w}}}}=\vec{\bm{A}}^{T}\vec{\bm{w}}^{*}\\ \frac{\partial{f}}{\partial{\vec{\bm{w}}^{*}}}=\vec{\bm{A}}\vec{\bm{w}} \end{cases} f(w )=w HA w { w f=A Tw w f=A w
  其中 w ⃗ \vec{\bm{w}} w 为列向量, A ⃗ \vec{\bm{A}} A 为矩阵, f ( w ⃗ ) f(\vec{\bm{w}}) f(w )为标量

5. 关于实变量/向量的一些结论

  a. ∂ a ⃗ T b ⃗ ∂ b ⃗ = ∂ b ⃗ T a ⃗ ∂ b ⃗ = a ⃗ \frac{\partial{\vec{\bm{a}}}^{T}{\vec{\bm{b}}}}{\partial{\vec{\bm{b}}}}=\frac{\partial{\vec{\bm{b}}}^{T}{\vec{\bm{a}}}}{\partial{\vec{\bm{b}}}}=\vec{\bm{a}} b a Tb =b b Ta =a
  b. ∂ b ⃗ T A ⃗ b ⃗ ∂ b ⃗ = 2 A ⃗ b ⃗ = 2 b ⃗ T A ⃗ \frac{\partial{\vec{\bm{b}}}^{T}{\vec{\bm{A}}}{\vec{\bm{b}}}}{\partial{\vec{\bm{b}}}}=2\vec{\bm{A}}\vec{\bm{b}}=2\vec{\bm{b}}^{T}\vec{\bm{A}} b b TA b =2A b =2b TA
  其中 a ⃗ \vec{\bm{a}} a b ⃗ \vec{\bm{b}} b 均为列向量, A ⃗ \vec{\bm{A}} A 为对称矩阵

6. 参考文献

[1] 张贤达.矩阵分析与应用[M].北京:高等教育出版社,2004

猜你喜欢

转载自blog.csdn.net/wjrenxinlei/article/details/105310312