Java网络编程学习笔记(4)——TCP, HTTP, Socket, HTTPS

前言

本文章主要介绍网络原理中……,并详细介绍三种协议

首先先对TCP, IP, HTTP, Socket进行一个简要区分
网络由下往上分为 物理层、数据链路层、网络层、传输层、会话层、表示层,应用层
IP协议对应于网络层,TCP协议对应于传输层,而HTTP协议对应于应用层  
socket则是对TCP/IP协议的封装和应用,socket本质是一个接口。  
TCP/IP协议主要解决数据如何在网络中传输,
而HTTP是应用层协议,主要解决如何包装数据。

实际上,传输层的TCP是基于网络层的IP协议的,而应用层的HTTP协议又是基于传输层的TCP协议的,而Socket本身不算是协议,就像上面所说,它只是提供了一个针对TCP或者UDP编程的接口。

“我们在传输数据时,可以只使用(传输层)TCP/IP协议,但是那样的话,如果没有应用层,便无法识别数据内容。  如果想要使传输的数据有意义,则必须使用到应用层协议。  应用层协议有很多,比如HTTP、FTP、TELNET等,也可以自己定义应用层协议。  WEB使用HTTP协议作应用层协议,以封装HTTP文本信息,然后使用TCP/IP做传输层协议将它发到网络上。”

1.TCP协议

TCP(Transmission Control Protocol,传输控制协议)是基于连接的协议,也就是说,在正式收发数据前,必须和对方建立可靠的连接。
一个TCP连接必须要经过三次“对话”才能建立起来

TCP“三次握手”

这三次对话的简单过程:
1.主机A向主机B发出连接请求数据包;
2.主机B向主机A发送同意连接和要求同步(同步就是两台主机一个在发送,一个在接收,协调工作)的数据包;
3.主机A再发出一个数据包确认主机B的要求同步:“我现在就发,你接着吧!”
三次“对话”的目的是使数据包的发送和接收同步,经过三次“对话”之后,主机A才向主机B正式发送数据。

第一次握手:客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;

第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。

TCP 三次握手:握手过程中并不传输数据,在握手后服务器与客户端才开始传输数据,理想状态下,TCP 连接一旦建立,在通讯双方中的任何一方主动断开连接之前 TCP 连接会一直保持下去。

SYN(synchronous)

SYN(synchronous)是TCP/IP建立连接时使用的握手信号。在客户机和服务器之间建立正常的TCP网络连接时,客户机首先发出一个SYN消息,服务器使用SYN+ACK应答表示接收到了这个消息,最后客户机再以ACK消息响应。

这样在客户机和服务器之间才能建立起可靠的TCP连接,数据才可以在客户机和服务器之间传递。

TCP连接的第一个包,非常小的一种数据包。SYN 攻击包括大量此类的包,由于这些包看上去来自实际不存在的站点,因此无法有效进行处理。每个机器的欺骗包都要花几秒钟进行尝试方可放弃提供正常响应。SYN攻击属于DDoS攻击的一种,它利用TCP协议缺陷,通过发送大量的半连接请求,耗费CPU和内存资源。

TCP和UDP的区别

1、TCP是面向链接的,虽然说网络的不安全不稳定特性决定了多少次握手都不能保证连接的可靠性,但TCP的三次握手在最低限度上(实际上也很大程度上保证了)保证了连接的可靠性;  而UDP不是面向连接的,UDP传送数据前并不与对方建立连接,对接收到的数据也不发送确认信号,发送端不知道数据是否会正确接收,当然也不用重发,所以说UDP是无连接的、不可靠的一种数据传输协议。 
2、也正由于1所说的特点,使得UDP的开销更小数据传输速率更高,因为不必进行收发数据的确认,所以UDP的实时性更好。

知道了TCP和UDP的区别,就不难理解为何采用TCP传输协议的MSN比采用UDP的QQ传输文件慢了,但并不能说QQ的通信是不安全的,  因为程序员可以手动对UDP的数据收发进行验证,比如发送方对每个数据包进行编号然后由接收方进行验证啊什么的,  即使是这样,UDP因为在底层协议的封装上没有采用类似TCP的“三次握手”而实现了TCP所无法达到的传输效率。

2.HTTP协议

理解HTTP请求,搞清下面图片的含义。
这里写图片描述
HTTP是一个属于应用层的面向对象的协议,由于其简捷、快速的方式,适用于分布式超媒体信息系统。目前在WWW中使用的是HTTP/1.0的第六版
HTTP协议的主要特点可概括如下:
1.支持客户/服务器模式。
2.简单快速:客户向服务器请求服务时,只需传送请求方法和路径。请求方法常用的有GET、HEAD、POST。每种方法规定了客户与服务器联系的类型不同。由于HTTP协议简单,使得HTTP服务器的程序规模小,因而通信速度很快。
3.灵活:HTTP允许传输任意类型的数据对象。正在传输的类型由Content-Type加以标记。
4.无连接:无连接的含义是限制每次连接只处理一个请求。服务器处理完客户的请求,并收到客户的应答后,即断开连接。采用这种方式可以节省传输时间。
5.无状态:HTTP协议是无状态协议。无状态是指协议对于事务处理没有记忆能力。缺少状态意味着如果后续处理需要前面的信息,则它必须重传,这样可能导致每次连接传送的数据量增大。另一方面,在服务器不需要先前信息时它的应答就较快。

HTTP请求:

HTTP请求格式主要由4部分组成,分别是请求行,请求头,空行,消息体,每部分内容占一行

<request-line>
<general-headers>
<request-headers>
<entity-headers>
<empty-line>
[<message-body>]

这里写图片描述
请求行:由三部分组成:分别是请求方法(GET/POST/DELETE/PUT/HEAD),请求资源的URI路径,HTTP的版本号。

GET /index.html HTTP/1.1

请求头:有和缓存相关的头(Cache-Control, If-Modified-Since),客户端身份信息(User-Agent)等等

Cache-Control:max-age=0
Cookie:gsScrollPos=; _ga=GA1.2.329038035.1465891024; _gat=1
If-Modified-Since:Sun, 01 May 2016 11:19:03 GMT
User-Agent:Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.84 Safari/537.36

消息体:请求体是客户端发给服务端的请求数据,这部分数据并不是每个请求必须的。

HTTP响应

服务器接收处理完请求后返回一个HTTP相应消息给客户端。HTTP响应消息的格式包括:状态行、响应头、空行、消息体。每部分内容占一行。

<status-line>
<general-headers>
<response-headers>
<entity-headers>
<empty-line>
[<message-body>]

这里写图片描述
状态行:状态行位于相应消息的第一行,有HTTP协议版本号,状态码和状态说明三部分构成。

HTTP/1.1 200 OK

响应头:响应头是服务器传递给客户端用于说明服务器的一些信息,以及将来继续访问该资源时的策略。

Connection:keep-alive
Content-Encoding:gzip
Content-Type:text/html; charset=utf-8
Date:Fri, 24 Jun 2016 06:23:31 GMT
Server:nginx/1.9.12
Transfer-Encoding:chunked

响应体:响应体是服务端返回给客户端的HTML文本内容,或者其他格式的数据,比如:视频流、图片或者音频数据。

http 为短连接:客户端发送请求都需要服务器端回送响应.请求结束后,主动释放链接,因此为短连接。通常的做法是,不需要任何数据,也要保持每隔一段时间向服务器发送”保持连接”的请求。这样可以保证客户端在服务器端是”上线”状态。

HTTP连接使用的是”请求-响应”方式,不仅在请求时建立连接,而且客户端向服务器端请求后,服务器才返回数据。

3.Socket

Socket 是对 TCP/IP 协议的封装,Socket 只是个接口不是协议,通过 Socket 我们才能使用 TCP/IP 协议,Socket的出现只是使得程序员更方便地使用TCP/IP协议栈而已,是对TCP/IP协议的抽象。

“TCP/IP只是一个协议栈,就像操作系统的运行机制一样,必须要具体实现,同时还要提供对外的操作接口。这个就像操作系统会提供标准的编程接口,比如win32编程接口一样,TCP/IP也要提供可供程序员做网络开发所用的接口,这就是Socket编程接口。”

创建 Socket 连接的时候,可以指定传输层协议,可以是 TCP 或者 UDP,当用 TCP 连接,该Socket就是个TCP连接,反之。

Socket 连接,至少需要一对套接字,分为 clientSocket,serverSocket 连接分为3个步骤:

(1) 服务器监听:服务器并不定位具体客户端的套接字,而是时刻处于监听状态;

(2) 客户端请求:客户端的套接字要描述它要连接的服务器的套接字,提供地址和端口号,然后向服务器套接字提出连接请求;

(3) 连接确认:当服务器套接字收到客户端套接字发来的请求后,就响应客户端套接字的请求,并建立一个新的线程,把服务器端的套接字的描述发给客户端。一旦客户端确认了此描述,就正式建立连接。而服务器套接字继续处于监听状态,继续接收其他客户端套接字的连接请求.

Socket为长连接:通常情况下Socket 连接就是 TCP 连接,因此 Socket 连接一旦建立,通讯双方开始互发数据内容,直到双方断开连接。在实际应用中,由于网络节点过多,在传输过程中,会被节点断开连接,因此要通过轮询高速网络,该节点处于活跃状态。

很多情况下,都是需要服务器端向客户端主动推送数据,保持客户端与服务端的实时同步。
若双方是 Socket 连接,可以由服务器直接向客户端发送数据。
若双方是 HTTP 连接,则服务器需要等客户端发送请求后,才能将数据回传给客户端。
因此,客户端定时向服务器端发送请求,不仅可以保持在线,同时也询问服务器是否有新数据,如果有就将数据传给客户端。

4.HTTPS

HTTP就是我们平时浏览网页时候使用的一种协议。HTTP协议传输的数据都是未加密的,也就是明文的,因此使用HTTP协议传输隐私信息非常不安全。为了保证这些隐私数据能加密传输,于是网景公司设计了SSL(Secure Sockets Layer)协议用于对HTTP协议传输的数据进行加密,从而就诞生了HTTPS。

SSL目前的版本是3.0,被IETF(Internet Engineering Task Force)定义在RFC 6101中,之后IETF对SSL 3.0进行了升级,于是出现了TLS(Transport Layer Security) 1.0,定义在RFC 2246。实际上我们现在的HTTPS都是用的TLS协议,但是由于SSL出现的时间比较早,并且依旧被现在浏览器所支持,因此SSL依然是HTTPS的代名词,但无论是TLS还是SSL都是上个世纪的事情,SSL最后一个版本是3.0,今后TLS将会继承SSL优良血统继续为我们进行加密服务。目前TLS的版本是1.2,定义在RFC 5246中,暂时还没有被广泛的使用。

HTTPS工作原理

HTTPS在传输数据之前需要客户端(浏览器)与服务端(网站)之间进行一次握手,在握手过程中将确立双方加密传输数据的密码信息。TLS/SSL协议不仅仅是一套加密传输的协议,更是一件经过艺术家精心设计的艺术品,TLS/SSL中使用了非对称加密,对称加密以及HASH算法。握手过程的简单描述如下:
1.浏览器将自己支持的一套加密规则发送给网站。
2.网站从中选出一组加密算法与HASH算法,并将自己的身份信息以证书的形式发回给浏览器。证书里面包含了网站地址,加密公钥,以及证书的颁发机构等信息。
3.获得网站证书之后浏览器要做以下工作:
a) 验证证书的合法性(颁发证书的机构是否合法,证书中包含的网站地址是否与正在访问的地址一致等),如果证书受信任,则浏览器栏里面会显示一个小锁头,否则会给出证书不受信的提示。
b) 如果证书受信任,或者是用户接受了不受信的证书,浏览器会生成一串随机数的密码,并用证书中提供的公钥加密。
c) 使用约定好的HASH计算握手消息,并使用生成的随机数对消息进行加密,最后将之前生成的所有信息发送给网站。
4.网站接收浏览器发来的数据之后要做以下的操作:
a) 使用自己的私钥将信息解密取出密码,使用密码解密浏览器发来的握手消息,并验证HASH是否与浏览器发来的一致。
b) 使用密码加密一段握手消息,发送给浏览器。
5.浏览器解密并计算握手消息的HASH,如果与服务端发来的HASH一致,此时握手过程结束,之后所有的通信数据将由之前浏览器生成的随机密码并利用对称加密算法进行加密。
这里浏览器与网站互相发送加密的握手消息并验证,目的是为了保证双方都获得了一致的密码,并且可以正常的加密解密数据,为后续真正数据的传输做一次测试。另外,HTTPS一般使用的加密与HASH算法如下:
非对称加密算法:RSA,DSA/DSS
对称加密算法:AES,RC4,3DES
HASH算法:MD5,SHA1,SHA256
其中非对称加密算法用于在握手过程中加密生成的密码,对称加密算法用于对真正传输的数据进行加密,而HASH算法用于验证数据的完整性。由于浏览器生成的密码是整个数据加密的关键,因此在传输的时候使用了非对称加密算法对其加密。非对称加密算法会生成公钥和私钥,公钥只能用于加密数据,因此可以随意传输,而网站的私钥用于对数据进行解密,所以网站都会非常小心的保管自己的私钥,防止泄漏。
TLS握手过程中如果有任何错误,都会使加密连接断开,从而阻止了隐私信息的传输。正是由于HTTPS非常的安全,攻击者无法从中找到下手的地方,于是更多的是采用了假证书的手法来欺骗客户端,从而获取明文的信息,但是这些手段都可以被识别出来

猜你喜欢

转载自blog.csdn.net/qq_37423198/article/details/79668284