从rookie到基佬~001:通道数

一天一个变弯小技巧

今日份洗脑:通道数

在这里插入图片描述

结论:通道数不需要计算,输入通道与输入图像的通道数相同,输出通道由人工设定【卷积核个数】,通道数又称卷积深度。

资料1:
卷积神经网络中的卷积反卷积及池化计算公式、特征图通道数(维度)变化、卷积核大小与深度等概念解释
链接:https://www.pianshen.com/article/1330939947/

1.计算公式
设:
图像宽为W,高为H,通道数为C;
卷积核尺寸为K,通道数为D,个数为N;
卷积运算步长为S,0填充大小为P;
输入和输出量分别以1和2表示。

卷积:
W2 = (W1 - K + 2×P) / S + 1
H2 = (H1 - K + 2×P) / S + 1
C2 = N

反卷积:
W2 = (W1-1) × S + K - 2×P
H2 = (H2-1) × S + K - 2×P
C2 = N

池化:
W2 = (W1 - K) / S + 1.
H2 = (H1 - K) / S + 1.
C2 = C1
卷积、反卷积和池化操作均可改变图像尺寸大小,但池化操作不会改变图像的通道数,而卷积与反卷积通常会改变图像的通道数。
2.特征图通道数(维度)变化
经过卷积运算输出的特征图通道数仅由卷积核的个数决定,随各卷积层中卷积核的个数变化而变化,即C2=N,例如32×32×3经过5个5×5×3的卷积核运算后输出的特征图通道数即为5,如28×28×5。
3.卷积核大小与深度
卷积核通道数:
卷积核的通道数只与输入图像的通道数有关,在进行卷积运算时,要求用于运算的卷积核的通道数应与输入图像的通道数一致,即D=C1,例如对32×32×3大小的输入图像进行卷积计算,卷积核通道数也为3,如5×5×3;
卷积核深度:
卷积核深度就是卷积核的个数,每个卷积核中各通道与输入图像各通道相对应,所有通道同时分别进行运算,然后形成输出特征图其中的一个通道,多个卷积核运算后便形成多个通道,因此卷积核的深度也就是输出图像的通道数。
再结合上一条,则卷积核的深度同时也决定了下一卷积层中卷积核的通道数,因为本卷积层输出图像就是下一层的输入图像;
在这里插入图片描述

资料2:卷积网络中的通道(Channel)和特征图 - Rogn - 博客园 (cnblogs.com)
链接:https://www.cnblogs.com/lfri/p/10491009.html

在计算机视觉处理中,一般图片数据除了是单通道的灰度图片外,就是RGB通道的彩色图片了。
对RGB图片进行卷积操作后,根据过滤器的数量就可以产生更多的通道。事实上,多数情况还是叫后面的卷积层中的通道为,特征图。但实际上在张量表示下,特征图和前面提到的通道差不多,有时候后面的也都叫通道了。一种卷积核得到一个通道,所以特征图个数=输出通道数=卷积核个数。
图片中的通道就是某种意义上的特征图。一个通道是对某个特征的检测,通道中某一处数值的强弱就是对当前特征强弱的反应。
对一定范围的特征图进行卷积,可以将多个特征组合出来的模式抽取成一个特征,获得下一个特征图。之后再继续,对特征图进行卷积,特征之间继续组合,获得更复杂的特征图。
又因为池化层的存在,会不断提取一定范围内最强烈的特征,并且缩小张量的大小,使得大范围内的特征组合也能够捕捉到。
通过特征角度来看卷积网络的话,那么1x1卷积也就很好理解了。即使1x1卷积前后的张量大小完全不变,比如说16x16x64 -> 16x16x64这样的卷积,看上去好像是没有变化。但实际上,可能通过特征之间的互动,已经由之前的64个特征图组成了新的64个特征图。
有时候我理解一个这样的1x1卷积操作,把它当成是一次对之前特征的整理。
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/bnanaber/article/details/121421263