ReentrantLock独享锁源码解析

参考的原文链接:https://blog.csdn.net/anlian523/article/details/106344926

(源码的主要分析在我的其它的总结,本文补充说明各种结构和细节上面的学习总结,还有就是框架的一个梳理,参考学习的文章是上面的链接,说的非常细节)
黑马并发编程(AQS源码分析、线程池)
黑马并发编程JUC(信号量、线程安全类)总结
黑马并发编程JUC总结

独占锁源码解析

重要变量(AQS)

private transient Thread exclusiveOwnerThread;//独占锁线程,在父类AbstractOwnableSynchronizer

private volatile int state;//在AQS中

队列节点结构

  • 双向链表,而且有一个nextWaiter来表示节点是共享还是独占
static final class Node {
    
    
        //共享锁的时候创建的节点
        static final Node SHARED = new Node();
       //独享锁节点
        static final Node EXCLUSIVE = null;

       //节点删除状态
        static final int CANCELLED =  1;
     //提醒状态,说明后面有节点需要被唤醒
        static final int SIGNAL    = -1;
       //处在条件队列
        static final int CONDITION = -2;
      //我的理解是传播状态,提醒还有共享锁,防止重复唤醒
        static final int PROPAGATE = -3;

        volatile int waitStatus;
    //双向链表结构
        volatile Node prev;
        volatile Node next;
		//Node的包装的线程
        volatile Thread thread;
		
    //表明Node是shared还是独占锁,但是不参与队列中
        Node nextWaiter;

        final boolean isShared() {
    
    
            return nextWaiter == SHARED;
        }
    }

AQS持有队列

  • head是null,也就是dummyNode
  • 等待线程一个,但是节点肯定有两个
  private transient volatile Node head;

    /**
     * Tail of the wait queue, lazily initialized.  Modified only via
     * method enq to add new wait node.
     */
    private transient volatile Node tail;

image-20211020175304626

Unsafe

通过unsafe来修改变量,防止出现并发问题

private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long stateOffset;
    private static final long headOffset;
    private static final long tailOffset;
    private static final long waitStatusOffset;
    private static final long nextOffset;

    static {
    
    
        try {
    
    
            stateOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("waitStatus"));
            nextOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("next"));

        } catch (Exception ex) {
    
     throw new Error(ex); }
    }
 /**
     * CAS head field. Used only by enq.
     */
    private final boolean compareAndSetHead(Node update) {
    
    
        return unsafe.compareAndSwapObject(this, headOffset, null, update);
    }

    /**
     * CAS tail field. Used only by enq.
     */
    private final boolean compareAndSetTail(Node expect, Node update) {
    
    
        return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
    }

    /**
     * CAS waitStatus field of a node.
     */
    private static final boolean compareAndSetWaitStatus(Node node,
                                                         int expect,
                                                         int update) {
    
    
        return unsafe.compareAndSwapInt(node, waitStatusOffset,
                                        expect, update);
    }

    /**
     * CAS next field of a node.
     */
    private static final boolean compareAndSetNext(Node node,
                                                   Node expect,
                                                   Node update) {
    
    
        return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
    }

ReentantLock的内部类

  • Sync继承AQS,并且实现了tryRelease,父类实现抛出异常
  • FairSync和nonFairSync继承Sync,公平和非公平,实现了tryAcquire,父类实现抛出异常
public class ReentrantLock implements Lock, java.io.Serializable {
    
    
    private final Sync sync;
    
    abstract static class Sync extends AbstractQueuedSynchronizer {
    
    
        ...
    }
    
    static final class NonfairSync extends Sync{
    
    
        ...
    }
    
    static final class FairSync extends Sync {
    
    
        ...
    }
    // 默认是非公平锁
    public ReentrantLock() {
    
    
        sync = new NonfairSync();
    }
    // 根据参数,设置公平或非公平
    public ReentrantLock(boolean fair) {
    
    
        sync = fair ? new FairSync() : new NonfairSync();
    }
    
    // 获取锁
    public void lock() {
    
    
        sync.lock();
    }
    
    ...
}

ReentrantLock的公平和是否能够中断

  • 实现了AQS的独占锁
  • 公平与非公平锁
  • 能不能够中断

第一个实现公平和不响应阻断FairSync同步器(说说lock的过程?)

 static final class FairSync extends Sync {
    
    
        private static final long serialVersionUID = -3000897897090466540L;

        final void lock() {
    
    
            acquire(1);
        }

  
        protected final boolean tryAcquire(int acquires) {
    
    
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
    
    
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
    
    
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
    
    
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }

acquire分析

  • tryAcquire尝试获取锁,如果成功就是true,否则false
  • acquireQueue不断尝试tryAcquire,中间会有阻塞和唤醒
  • addWaiter把需要等待的线程加入队列。
  • selfInterrupt重新设置中断状态,阻塞期间线程被中断,但是中断状态被消耗。需要重新设置
public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

tryAcquire分析

  • 判断锁是否被用了,如果是c==0说明没有那么就需要看看阻塞队列是否有线程排队,如果没有才能够设置当前线程获取锁。给锁设置owner
  • 接着就是判断是不是可重入锁。用set的原因是这里只能是一个线程,之前的是因为可能多个线程竞争需要CAS
protected final boolean tryAcquire(int acquires) {
    
    
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
    
    
                //判断是否有队列
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
    
    
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
    
    
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

addWaiter

  • 把节点加到队尾
  • 如果发现tail是空的执行enq实际上就是创建tail然后再把节点放入节点后逻辑基本上一样。也有可能是CAS失败,重新进入enq来把节点加入到队尾。使用了自旋+CAS

为什么需要要使用双向队列和tail指针?

  • 新节点node(多个,因为有多个线程执行添加节点)的prev指向tail
  • tail改成其中抢占成功的线程节点。但是这个时候前一个tail没有指向下一个新节点导致从前面往后面遍历导致漏掉了一个
  • 但是现在的tail往前面遍历使用prev指针就能正确遍历。
private Node addWaiter(Node mode) {
    
    
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
     //加入新节点
        if (pred != null) {
    
    
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
    
    
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }
 private Node enq(final Node node) {
    
    
        for (;;) {
    
    
            Node t = tail;
            //初始化尾节点
            if (t == null) {
    
     // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
    
    
                node.prev = t;
                if (compareAndSetTail(t, node)) {
    
    //把tail指向新加入的那个节点
                    t.next = node;//t指向的是前一个tail
                    return t;
                }
            }
        }
    }

acquireQueue

    final boolean acquireQueued(final Node node, int arg) {
    
    
        boolean failed = true;
        try {
    
    
            boolean interrupted = false;
            for (;;) {
    
    
                final Node p = node.predecessor();
                // 尝试获取锁的前提是node是head的后继
                if (p == head && tryAcquire(arg)) {
    
    
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                // 执行到这里,说明
                // 要么不符合 尝试获取锁的前提
                // 要么 尝试获取锁失败了
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
    
    
            if (failed)
                cancelAcquire(node);
        }
    }

acquireQueued

实际上就是不断通过for循环来tryAcquire获取锁,至少执行两次,才会被阻塞,阻塞之后能被前驱节点唤醒再次进入循环

  • 尝试不断获取锁,但是前提是前一个节点是head
  • 线程可以被中断,但是最后不会执行cancelAcquire。也就是AQS使用者是不被中断的。
  • setHead处理的阻塞之后获取锁的节点为head。head之所以为null是因为当前线程已经成功放入owner
final boolean acquireQueued(final Node node, int arg) {
    
    
        boolean failed = true;
        try {
    
    
            boolean interrupted = false;
            for (;;) {
    
    
                //取出当前节点前一个节点
                final Node p = node.predecessor();
                //如果是老二,那么就可以尝试获取锁
                if (p == head && tryAcquire(arg)) {
    
    
                    
                   //把当前节点设置为dummyNode
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
    
    
            if (failed)
                cancelAcquire(node);
        }
    }
private void setHead(Node node) {
    
    
        head = node;
        node.thread = null;
        node.prev = null;
    }

shouldParkAfterFailedAcquire

  • 判断前驱节点是不是signal如果是就返回true,如果不是那么就会往前找
  • 如果ws>0说明节点是CANCELLED不再等待那么就要循环找到0或者是PROPAGATE的节点设置为signal提醒这个节点后面需要它去唤醒后驱节点。
  • 死循环保证了一定能够修改状态
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    
    
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
    
    
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
    
    
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
    
    
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

parkAndCheckInterrupt分析

  • 使用的是LockSupport.park来进行阻塞。
  • Thread.interrupt如果期间被中断那么就会重新唤醒,并且清除中断状态,把acquireQueued中的interrupted改为true最后返回到acquire的结果就是true,然后调用一次中断状态,可能线程需要使用。
private final boolean parkAndCheckInterrupt() {
    
    
        LockSupport.park(this);
        return Thread.interrupted();
    }

image-20211020194617288

非公平、响应阻断同步器NonFairSync

  • 非公平锁和公平锁唯一的不同就是一开始的lock是先尝试改变状态然后再acquire。如果直接lock成功就能够直接插队
  • nonfairTryAcquire唯一不同的地方就是不需要看是否有阻塞队列直接开始插队。但是tryAcquire就需要看是不是有阻塞队列
//ReentrantLock.java
    abstract static class Sync extends AbstractQueuedSynchronizer {
    
    
    	...
        final boolean nonfairTryAcquire(int acquires) {
    
    
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
    
    
                if (compareAndSetState(0, acquires)) {
    
    
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
    
    
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
        ...
	}


    static final class NonfairSync extends Sync {
    
    
        private static final long serialVersionUID = 7316153563782823691L;

        final void lock() {
    
    
        	// if分支里的逻辑只是一次快速尝试
        	// 它和nonfairTryAcquire里的部分逻辑是一样的
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

        protected final boolean tryAcquire(int acquires) {
    
    
        	// 将nonfairTryAcquire的逻辑直接放在这里,就把公平锁看起来一样了
            return nonfairTryAcquire(acquires);
        }
    }


final boolean nonfairTryAcquire(int acquires) {
    
    
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
    
    
                if (compareAndSetState(0, acquires)) {
    
    
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
    
    
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

响应中断、独占锁的获取

  • 对比不可中断,这里lockInterruptly是直接调用acqurieInterruptibly而不是acquire。
  • 如果发现调用的时候线程被中断立刻抛出异常
  • 如果没有抛出异常那么执行doAcquireInterruptibly相当于就是acquireQueue。但是它没有返回值,因为它并不需要通知线程的中断状况,而是能够直接中断抛出异常
  • 而且能够调用cancelAcquire,相当于就是从队列中删除节点,而且删除节点相当于就是设置了闹钟,首先就是要获取准备删除node节点的pred前驱。获取前驱之后为了防止可能出现pred被中间中断,变成cancelled和突然变成头结点(pred线程占了锁),并且还要判断线程在不在来判断是不是真的变成了头结点,还有可能是节点CAS变成signal失败那么就跟应该释放node,因为如果没有释放node,那么pred根本不会唤醒node,如果这些都不符合那么node的后继可安心睡觉被连接,如果符合就直接唤醒node,让后继走向第一个节点。
public void lockInterruptibly() throws InterruptedException {
    
    
        sync.acquireInterruptibly(1);
    }
public final void acquireInterruptibly(int arg)
            throws InterruptedException {
    
    
        if (Thread.interrupted())
            throw new InterruptedException();
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }
 private void doAcquireInterruptibly(int arg)
        throws InterruptedException {
    
    
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
    
    
            for (;;) {
    
    
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
    
    
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    //变成了抛出异常,那么finally的failed就是true可以执行cancel
                    throw new InterruptedException();
            }
        } finally {
    
    
            if (failed)
                cancelAcquire(node);
        }
    }
private void cancelAcquire(Node node) {
    
    
        // Ignore if node doesn't exist
        if (node == null)
            return;

        node.thread = null;

        //循环取出队列的有效前驱节点,>0是cancel,其他小于等于0的是有效节点
        Node pred = node.prev;
        while (pred.waitStatus > 0)
            node.prev = pred = pred.prev;

        //为了删除node,这个时候pred的next其实就是node,防止其他节点访问到它
        Node predNext = pred.next;

        //设置节点状态为正在删除,防止其他线程在添加节点的时候把它设置signal导致后面没办法唤醒线程。
        node.waitStatus = Node.CANCELLED;

        //如果node节点是尾部,那么就直接设置next是null
        if (node == tail && compareAndSetTail(node, pred)) {
    
    
            compareAndSetNext(pred, predNext, null);
        } else {
    
    
           //如果是中间节点,那么就直接跨过它,前驱节点的next就是node.next
            int ws;
            if (pred != head &&//判断是不是头结点,如果是,那么就唤醒node,唤醒node让它自动走出队列
                ((ws = pred.waitStatus) == Node.SIGNAL ||//如果ws不是signal而且设置waitStatus失败的话,那么相当于pred的状态可能还是cancel那么也只能唤醒node出队,让后继成为第一个节点
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
    
    //如果pred的线程是空的那么也是说pred是头结点,那么就唤醒node让node的后继作为第一个节点
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
    
    
                unparkSuccessor(node);
            }

            node.next = node; // help GC
        }
    }

超时锁获取

tryLock

  • 和lockInterruptibly不一样的地方就是它加上了超时时间,或者是只会尝试一次就结束循环。
  • tryLock之后就是调用tryAcquireNacos这里首先就是调用tryAcquire(可以是公平或者是不公平获取锁),如果不行那么才会执行doAcquireNanos
  • doAcquireNanos和doAcquireInterruptibly的区别就是Nacnos多了一个死期计算,如果到达死期或者是已经超过死期那么就会自动结束循环
public boolean tryLock(long timeout, TimeUnit unit)
            throws InterruptedException {
    
    
    //定时获取锁,如果超时就结束
        return sync.tryAcquireNanos(1, unit.toNanos(timeout));
    }
 public final boolean tryAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
    
    
        if (Thread.interrupted())//可以直接被中断
            throw new InterruptedException();
        return tryAcquire(arg) ||//先尝试获取锁
            doAcquireNanos(arg, nanosTimeout);//进入阻塞队列
    }
private boolean doAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
    
    
        if (nanosTimeout <= 0L)
            return false;
        final long deadline = System.nanoTime() + nanosTimeout;
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
    
    
            for (;;) {
    
    
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
    
    
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return true;
                }
                //计算超时时间,死期
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                if (shouldParkAfterFailedAcquire(p, node) &&
                    nanosTimeout > spinForTimeoutThreshold)//超过1ms
                    LockSupport.parkNanos(this, nanosTimeout);
                if (Thread.interrupted())
                    throw new InterruptedException();
            }
        } finally {
    
    
            if (failed)
                cancelAcquire(node);
        }
    }

image-20211021123937849

说说独享锁释放的过程(说说unlock的过程)?

release

  • unlock之后第一个调用的函数,尝试tryRelease,然后就是唤醒下一个节点。
public void unlock() {
    
    
        sync.release(1);
    }
 public final boolean release(int arg) {
    
    
        if (tryRelease(arg)) {
    
    //释放成功
            Node h = head;//唤醒下一个节点
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

tryRelease

  • 如果没有获取锁的情况release那么就会抛出异常,指的是没有锁的时候unlock
  • 接着就是释放锁或者是减少可重入锁,知道state为0的时候才是释放锁的时候
protected final boolean tryRelease(int releases) {
    
    
            int c = getState() - releases;
    //防止没锁的时候unlock
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
    //释放锁
            boolean free = false;
            if (c == 0) {
    
    
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

unparkSuccessor

  • 获取当前节点的状态,如果是<0说明就是signal那么就可以把状态改为0。说明已经开始唤醒下一个线程
  • 取出下一个节点,如果s==null说明这里的next还没有赋值,说明还在加入到队列中,那么可以通过tail往前面找,利用pred的有效性找到对应的节点(其实还是node的下一个节点)。
  • 中找到之后那么就执行unpark这个节点的线程。
 private void unparkSuccessor(Node node) {
    
    
        
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

     
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
    
    
            //next还没有设置
            s = null;
            //利用pred的有效性,往前面找
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)//唤醒前一个节点
            LockSupport.unpark(s.thread);
    }

unparkSuccessor

  • 获取当前节点的状态,如果是<0说明就是signal那么就可以把状态改为0。说明已经开始唤醒下一个线程
  • 取出下一个节点,如果s==null说明这里的next还没有赋值,说明还在加入到队列中,那么可以通过tail往前面找,利用pred的有效性找到对应的节点(其实还是node的下一个节点)。
  • 中找到之后那么就执行unpark这个节点的线程。
 private void unparkSuccessor(Node node) {
    
    
        
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

     
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
    
    
            //next还没有设置
            s = null;
            //利用pred的有效性,往前面找
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)//唤醒前一个节点
            LockSupport.unpark(s.thread);
    }

猜你喜欢

转载自blog.csdn.net/m0_46388866/article/details/120897613