Java 并发编程 - CountDownLatch

1、关于 CountDownLatch

  • countDownLatch 是一个同步辅助类,通过他可以完成类似于线程堵塞功能。这个类使一个线程等待其他线程各自执行完毕后再执行。
     
  • countDownLatch 是通过一个计数器来实现的,计数器的初始值是线程的数量。每当一个线程执行完毕后,计数器的值就-1,当计数器的值为0时,表示所有线程都执行完毕,然后在闭锁上等待的线程就可以恢复工作了。

在这里插入图片描述

2、CountDownLatch 源码分析

2.1 源码示例



package java.util.concurrent;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;

/**
 * A synchronization aid that allows one or more threads to wait until
 * a set of operations being performed in other threads completes.
 *
 * <p>A {@code CountDownLatch} is initialized with a given <em>count</em>.
 * The {@link #await await} methods block until the current count reaches
 * zero due to invocations of the {@link #countDown} method, after which
 * all waiting threads are released and any subsequent invocations of
 * {@link #await await} return immediately.  This is a one-shot phenomenon
 * -- the count cannot be reset.  If you need a version that resets the
 * count, consider using a {@link CyclicBarrier}.
 *
 * <p>A {@code CountDownLatch} is a versatile synchronization tool
 * and can be used for a number of purposes.  A
 * {@code CountDownLatch} initialized with a count of one serves as a
 * simple on/off latch, or gate: all threads invoking {@link #await await}
 * wait at the gate until it is opened by a thread invoking {@link
 * #countDown}.  A {@code CountDownLatch} initialized to <em>N</em>
 * can be used to make one thread wait until <em>N</em> threads have
 * completed some action, or some action has been completed N times.
 *
 * <p>A useful property of a {@code CountDownLatch} is that it
 * doesn't require that threads calling {@code countDown} wait for
 * the count to reach zero before proceeding, it simply prevents any
 * thread from proceeding past an {@link #await await} until all
 * threads could pass.
 *
 * <p><b>Sample usage:</b> Here is a pair of classes in which a group
 * of worker threads use two countdown latches:
 * <ul>
 * <li>The first is a start signal that prevents any worker from proceeding
 * until the driver is ready for them to proceed;
 * <li>The second is a completion signal that allows the driver to wait
 * until all workers have completed.
 * </ul>
 *
 *  <pre> {@code
 * class Driver { // ...
 *   void main() throws InterruptedException {
 *     CountDownLatch startSignal = new CountDownLatch(1);
 *     CountDownLatch doneSignal = new CountDownLatch(N);
 *
 *     for (int i = 0; i < N; ++i) // create and start threads
 *       new Thread(new Worker(startSignal, doneSignal)).start();
 *
 *     doSomethingElse();            // don't let run yet
 *     startSignal.countDown();      // let all threads proceed
 *     doSomethingElse();
 *     doneSignal.await();           // wait for all to finish
 *   }
 * }
 *
 * class Worker implements Runnable {
 *   private final CountDownLatch startSignal;
 *   private final CountDownLatch doneSignal;
 *   Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
 *     this.startSignal = startSignal;
 *     this.doneSignal = doneSignal;
 *   }
 *   public void run() {
 *     try {
 *       startSignal.await();
 *       doWork();
 *       doneSignal.countDown();
 *     } catch (InterruptedException ex) {} // return;
 *   }
 *
 *   void doWork() { ... }
 * }}</pre>
 *
 * <p>Another typical usage would be to divide a problem into N parts,
 * describe each part with a Runnable that executes that portion and
 * counts down on the latch, and queue all the Runnables to an
 * Executor.  When all sub-parts are complete, the coordinating thread
 * will be able to pass through await. (When threads must repeatedly
 * count down in this way, instead use a {@link CyclicBarrier}.)
 *
 *  <pre> {@code
 * class Driver2 { // ...
 *   void main() throws InterruptedException {
 *     CountDownLatch doneSignal = new CountDownLatch(N);
 *     Executor e = ...
 *
 *     for (int i = 0; i < N; ++i) // create and start threads
 *       e.execute(new WorkerRunnable(doneSignal, i));
 *
 *     doneSignal.await();           // wait for all to finish
 *   }
 * }
 *
 * class WorkerRunnable implements Runnable {
 *   private final CountDownLatch doneSignal;
 *   private final int i;
 *   WorkerRunnable(CountDownLatch doneSignal, int i) {
 *     this.doneSignal = doneSignal;
 *     this.i = i;
 *   }
 *   public void run() {
 *     try {
 *       doWork(i);
 *       doneSignal.countDown();
 *     } catch (InterruptedException ex) {} // return;
 *   }
 *
 *   void doWork() { ... }
 * }}</pre>
 *
 * <p>Memory consistency effects: Until the count reaches
 * zero, actions in a thread prior to calling
 * {@code countDown()}
 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
 * actions following a successful return from a corresponding
 * {@code await()} in another thread.
 *
 * @since 1.5
 * @author Doug Lea
 */
public class CountDownLatch {
    
    
    /**
     * Synchronization control For CountDownLatch.
     * Uses AQS state to represent count.
     */
    private static final class Sync extends AbstractQueuedSynchronizer {
    
    
        private static final long serialVersionUID = 4982264981922014374L;

        Sync(int count) {
    
    
            setState(count);
        }

        int getCount() {
    
    
            return getState();
        }

        protected int tryAcquireShared(int acquires) {
    
    
            return (getState() == 0) ? 1 : -1;
        }

        protected boolean tryReleaseShared(int releases) {
    
    
            // Decrement count; signal when transition to zero
            for (;;) {
    
    
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }
    }

    private final Sync sync;

    /**
     * Constructs a {@code CountDownLatch} initialized with the given count.
     *
     * @param count the number of times {@link #countDown} must be invoked
     *        before threads can pass through {@link #await}
     * @throws IllegalArgumentException if {@code count} is negative
     */
    public CountDownLatch(int count) {
    
    
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

    /**
     * Causes the current thread to wait until the latch has counted down to
     * zero, unless the thread is {@linkplain Thread#interrupt interrupted}.
     *
     * <p>If the current count is zero then this method returns immediately.
     *
     * <p>If the current count is greater than zero then the current
     * thread becomes disabled for thread scheduling purposes and lies
     * dormant until one of two things happen:
     * <ul>
     * <li>The count reaches zero due to invocations of the
     * {@link #countDown} method; or
     * <li>Some other thread {@linkplain Thread#interrupt interrupts}
     * the current thread.
     * </ul>
     *
     * <p>If the current thread:
     * <ul>
     * <li>has its interrupted status set on entry to this method; or
     * <li>is {@linkplain Thread#interrupt interrupted} while waiting,
     * </ul>
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     *
     * @throws InterruptedException if the current thread is interrupted
     *         while waiting
     */
    public void await() throws InterruptedException {
    
    
        sync.acquireSharedInterruptibly(1);
    }

    /**
     * Causes the current thread to wait until the latch has counted down to
     * zero, unless the thread is {@linkplain Thread#interrupt interrupted},
     * or the specified waiting time elapses.
     *
     * <p>If the current count is zero then this method returns immediately
     * with the value {@code true}.
     *
     * <p>If the current count is greater than zero then the current
     * thread becomes disabled for thread scheduling purposes and lies
     * dormant until one of three things happen:
     * <ul>
     * <li>The count reaches zero due to invocations of the
     * {@link #countDown} method; or
     * <li>Some other thread {@linkplain Thread#interrupt interrupts}
     * the current thread; or
     * <li>The specified waiting time elapses.
     * </ul>
     *
     * <p>If the count reaches zero then the method returns with the
     * value {@code true}.
     *
     * <p>If the current thread:
     * <ul>
     * <li>has its interrupted status set on entry to this method; or
     * <li>is {@linkplain Thread#interrupt interrupted} while waiting,
     * </ul>
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     *
     * <p>If the specified waiting time elapses then the value {@code false}
     * is returned.  If the time is less than or equal to zero, the method
     * will not wait at all.
     *
     * @param timeout the maximum time to wait
     * @param unit the time unit of the {@code timeout} argument
     * @return {@code true} if the count reached zero and {@code false}
     *         if the waiting time elapsed before the count reached zero
     * @throws InterruptedException if the current thread is interrupted
     *         while waiting
     */
    public boolean await(long timeout, TimeUnit unit)
        throws InterruptedException {
    
    
        return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
    }

    /**
     * Decrements the count of the latch, releasing all waiting threads if
     * the count reaches zero.
     *
     * <p>If the current count is greater than zero then it is decremented.
     * If the new count is zero then all waiting threads are re-enabled for
     * thread scheduling purposes.
     *
     * <p>If the current count equals zero then nothing happens.
     */
    public void countDown() {
    
    
        sync.releaseShared(1);
    }

    /**
     * Returns the current count.
     *
     * <p>This method is typically used for debugging and testing purposes.
     *
     * @return the current count
     */
    public long getCount() {
    
    
        return sync.getCount();
    }

    /**
     * Returns a string identifying this latch, as well as its state.
     * The state, in brackets, includes the String {@code "Count ="}
     * followed by the current count.
     *
     * @return a string identifying this latch, as well as its state
     */
    public String toString() {
    
    
        return super.toString() + "[Count = " + sync.getCount() + "]";
    }
}

2.2 源码分析

 
1、CountDownLatch 类 只有一个构造方法,参数count为计数值

/**
     * Constructs a {@code CountDownLatch} initialized with the given count.
     * 
     * @param count the number of times {@link #countDown} must be invoked
     *        before threads can pass through {@link #await}
     * @throws IllegalArgumentException if {@code count} is negative
     */
    public CountDownLatch(int count) {
    
    
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

 
2、CountDownLatch 类中比较重要的3个方法


	/** 调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行 **/
	public void await() throws InterruptedException {
    
     // ……};   
	
	/** 和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行 **/
	public boolean await(long timeout, TimeUnit unit)
	                              throws InterruptedException {
    
     // …… };  
	
	/** 将count值减1 **/
	public void countDown() {
    
     // …… };  

3、实用示例

3.1 await() + countDown()

package com.lcao.aqs;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/**
 * @author 
 * @title: CountDownLatchExample
 * @description: TODO
 * @date 2020/4/20 9:52
 */
@Slf4j
public class CountDownLatchExample {
    
    

    // 定义线程数
    private static int threadCount = 300;

    public static void main(String[] args) throws Exception {
    
    
        // 申明一个 newCacheThreadPool 线程池
        ExecutorService threadPool = Executors.newCachedThreadPool();
        // 初始化 CoutDownLatch 时给定一个计数值 threadCount。
        final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
        for (int i = 0 ; i < threadCount; i++) {
    
    
            final int num = i;
            threadPool.execute(new Runnable() {
    
    
                @Override
                public void run() {
    
    
                         try {
    
    
                             testMethod(num);
                         } catch (Exception e) {
    
    
                             log.info("线程调用失败!");
                             e.printStackTrace();
                         } finally {
    
    
                             //将 Count 值减1
                             countDownLatch.countDown();
                         }
                    }
            });
        }
        // 调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行
        countDownLatch.await();
        log.info("所有线程都执行完了,这个信息一定是最后执行的!");
        threadPool.shutdown();
    }


    private static void testMethod(int num) throws Exception {
    
    
        Thread.sleep(100);
        log.info("{}-线程执行:num = {}",Thread.currentThread().getId(),num);
    }

}

3.2 await(timeout, timeUnit) + countDown()

package com.lcao.aqs;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

/**
 * @author 
 * @title: CountDownLatchExample
 * @description: TODO
 * @date 2020/4/20 9:52
 */
@Slf4j
public class CountDownLatchExample {
    
    

    // 定义线程数
    private static int threadCount = 300;

    public static void main(String[] args) throws Exception {
    
    
        // 申明一个 newCacheThreadPool 线程池
        ExecutorService threadPool = Executors.newCachedThreadPool();
        // 初始化 CoutDownLatch 时给定一个计数值 threadCount。
        final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
        for (int i = 0 ; i < threadCount; i++) {
    
    
            final int num = i;
            threadPool.execute(new Runnable() {
    
    
                @Override
                public void run() {
    
    
                         try {
    
    
                             testMethod(num);
                         } catch (Exception e) {
    
    
                             log.info("线程调用失败!");
                             e.printStackTrace();
                         } finally {
    
    
                             //将 Count 值减1
                             countDownLatch.countDown();
                         }
                    }
            });
        }
        // 等待1000 毫秒 后count值还没变为0的话就会继续执行
        countDownLatch.await(1000, TimeUnit.MILLISECONDS);
        log.info("这条消息不一定是最后显示!!!");
        threadPool.shutdown();
    }


    private static void testMethod(int num) throws Exception {
    
    
        Thread.sleep(1000);
        log.info("{}-线程执行:num = {}",Thread.currentThread().getId(),num);
    }

}

 
 
 
 
 
 
 
 
 
.

猜你喜欢

转载自blog.csdn.net/weixin_41922349/article/details/105628675