现代通信原理14.2:M进制数字调制信号波形的向量表示

1. 用向量表示 M M M进制信号

  对于M进制数字调制信号而言,如果我们有了完备的标准正交波形集 { f n ( t ) ,   n = 1 , 2 , … , N } \{f_n(t),\ n=1,2,\ldots, N\} { fn(t), n=1,2,,N},就可以把信号 s m ( t ) , m = 1 , 2 , … , M s_m(t),m=1,2,\ldots,M sm(t),m=1,2,,M,表示成 { f n ( t ) } \{f_n(t)\} { fn(t)}的线性组合,即
s m ( t ) = ∑ n = 1 N s m n f n ( t ) , m = 1 , 2 , … , M (1.1) \tag{1.1} s_m(t)=\sum_{n=1}^{N}s_{mn}f_n(t),\quad m=1,2,\ldots,M sm(t)=n=1Nsmnfn(t),m=1,2,,M(1.1)由此,我们可以把信号 s m ( t ) s_m(t) sm(t)表示成向量
s m = [ s m 1 , s m 2 , … , s m N ] , (1.2) \tag{1.2} {\rm s}_m=[s_{m1},s_{m2},\ldots,s_{mN}], sm=[sm1,sm2,,smN],(1.2)其中,
s m n = ∫ − ∞ ∞ s m ( t ) f n ( t ) , m = 1 , 2 , … , M ; n = 1 , 2 , … , N . (1.3) \tag{1.3} s_{mn}=\int_{-\infty}^{\infty}s_m(t)f_n(t),\quad m=1,2,\ldots,M;n=1,2,\ldots,N. smn=sm(t)fn(t),m=1,2,,M;n=1,2,,N.(1.3)也就是说, s m ( t ) s_m(t) sm(t)为正交函数集 { f n ( t ) ,   n = 1 , 2 , … , N } \{f_n(t),\ n=1,2,\ldots, N\} { fn(t), n=1,2,,N}所张成的向量空间中的一个点。进一步,可以得到信号 s m ( t ) s_m(t) sm(t)的能量为 E m = ∫ − ∞ ∞ s m 2 ( t ) d t = ∑ n = 1 N s m n 2 = ∥ s m ∥ 2 . E_m=\int_{-\infty}^{\infty}s_m^2(t)dt=\sum_{n=1}^{N}s_{mn}^2=\|{\bf s}_m\|^2. Em=sm2(t)dt=n=1Nsmn2=sm2.若有能量信号 s m ( t ) s_m(t) sm(t) s k ( t ) s_k(t) sk(t),其内积为
⟨ s m ( t ) , s k ( t ) ⟩ = ∫ − ∞ ∞ s m ( t ) s k ( t ) d t = ∑ n = 1 N ∑ i = 1 N s m n s k i ∫ − ∞ ∞ f n ( t ) f i ( t ) d t = ∑ n = 1 N s m n s k n = s m ⋅ s k , (1.4) \tag{1.4} \begin{aligned} \langle s_m(t),s_k(t)\rangle&=\int_{-\infty}^{\infty}s_m(t)s_k(t)dt\\&=\sum_{n=1}^{N}\sum_{i=1}^{N}s_{mn}s_{ki}\int_{-\infty}^{\infty}f_{n}(t)f_{i}(t)dt\\ &=\sum_{n=1}^{N}s_{mn}s_{kn}={\bf s}_m\cdot{\bf s}_k, \end{aligned} sm(t),sk(t)=sm(t)sk(t)dt=n=1Ni=1Nsmnskifn(t)fi(t)dt=n=1Nsmnskn=smsk,(1.4)相关系数为
ρ m k = 1 E m E k ∫ − ∞ ∞ s m ( t ) s k ( t ) d t = s m ⋅ s k ∥ s m ∥ ∥ s k ∥ , (1.5) \tag{1.5} \begin{aligned} \rho_{mk}=\frac{1}{\sqrt{E_m}\sqrt{E_k}}\int_{-\infty}^{\infty}s_{m}(t)s_{k}(t)dt=\frac{ {\bf s}_m\cdot{\bf s}_k}{\|{\bf s}_m\|\|{\bf s}_k\|}, \end{aligned} ρmk=Em Ek 1sm(t)sk(t)dt=smsksmsk,(1.5)二者之间(欧式)距离为
d m k = ∫ − ∞ ∞ [ s m ( t ) − s k ( t ) ] 2 d t = E m + E k − 2 E m E k ρ m k . (1.6) \tag{1.6} \begin{aligned} d_{mk}=\sqrt{\int_{-\infty}^{\infty}[s_m(t)-s_k(t)]^2dt}=\sqrt{E_m+E_k-2\sqrt{E_mE_k}\rho_{mk}}. \end{aligned} dmk=[sm(t)sk(t)]2dt =Em+Ek2EmEk ρmk .(1.6) E m = E k = E s E_m=E_k=E_s Em=Ek=Es,则有
d m k = 2 E s ( 1 − ρ m k ) . (1.7) \tag{1.7} \begin{aligned} d_{mk}=\sqrt{2E_s(1-\rho_{mk})}. \end{aligned} dmk=2Es(1ρmk) .(1.7)若用向量表示,则信号 s m ( t ) s_m(t) sm(t) s k ( t ) s_k(t) sk(t)之间欧氏距离为
d m n = ∥ s m − s k ∥ . (1.8) \tag{1.8} d_{mn}=\|{\bf s}_m-{\bf s}_k\|. dmn=smsk.(1.8)

【小结】

  • M M M个能量有限信号可以映射为 N N N维信号空间中的 M M M个点;
  • N N N维信号空间中的 M M M个点集合称为信号星座,其图形称信号星座图(或信号空间图);
  • 信号空间图中从坐标原点到信号空间中某一向量长度的平方等于相应信号的能量;
  • 在信号空间中,两向量端点之间的距离称为两个信号波形之间的欧式距离,其平方等于两信号波形之差的能量。

2. OOK信号波形的向量表示

  • OOK发送信号波形
      OOK调制时,发送信号为
    s ( t ) = { s 1 ( t ) = 2 E s 1 T b cos ⁡ 2 π f c t " 1 " s 2 ( t ) = 0 " 0 " (2.1) \tag{2.1} s(t)=\left\{ \begin{aligned}&s_1(t)=\sqrt{\frac{2E_{s1}}{T_b}}\cos2\pi f_ct\quad &"1"\\ &s_2(t)=0\quad &"0" \end{aligned} \right. s(t)=s1(t)=Tb2Es1 cos2πfcts2(t)=0"1""0"(2.1)其中, E s 1 E_{s1} Es1为信号 s 1 ( t ) s_1(t) s1(t)的能量。注意由于 E s 2 = 0 E_{s2}=0 Es2=0,因此当“0”、“1”等概率时,信号的平均能量 E s = 1 2 [ E s 1 + E s 2 ] = E s 1 2 E_s=\frac{1}{2}[E_{s1}+E_{s2}]=\frac{E_{s1}}{2} Es=21[Es1+Es2]=2Es1,故 E s 1 = 2 E s E_{s1}=2E_s Es1=2Es
  • 正交函数集构造
    下面我们来构造正交函数集 { f n ( t ) ,   n = 1 , 2 , … , N } \{f_n(t),\ n=1,2,\ldots, N\} { fn(t), n=1,2,,N}

【Gram-Schmidt方法构造正交函数集】
  下面我们讨论如何用Gram-Schmidt方法,从能量有限的信号集 { s m ( t ) , m = 1 , 2 , … , M } \{s_m(t),m=1,2,\ldots,M\} { sm(t),m=1,2,,M}构造正交函数集 { f n ( t ) ,   n = 1 , 2 , … , N } \{f_n(t),\ n=1,2,\ldots, N\} { fn(t), n=1,2,,N}。首先,有
f 1 ( t ) = s 1 ( t ) E 1 , f_1(t)=\frac{s_1(t)}{\sqrt{E_1}}, f1(t)=E1 s1(t),这里 E 1 E_1 E1为信号 s 1 ( t ) s_1(t) s1(t)的能量。随后,我们把 s 2 ( t ) s_2(t) s2(t)投影到 f 1 ( t ) f_1(t) f1(t)上去,得到
c 12 = ∫ − ∞ ∞ s 2 ( t ) f 1 ( t ) d t , c_{12}=\int_{-\infty}^{\infty}s_2(t)f_1(t)dt, c12=s2(t)f1(t)dt,再从 s 2 ( t ) s_2(t) s2(t)中将 c 12 f 1 ( t ) c_{12}f_1(t) c12f1(t)减去,可以得到
f 2 ′ ( t ) = s 2 ( t ) − c 12 f 1 ( t ) , f_2'(t)=s_2(t)-c_{12}f_1(t), f2(t)=s2(t)c12f1(t)对其归一化后有
f 2 ( t ) = f 2 ′ ( t ) E 2 , f_2(t)=\frac{f_2'(t)}{\sqrt{E_2}}, f2(t)=E2 f2(t),其中 E 2 E_2 E2 f 2 ′ ( t ) 的 能 量 f_2'(t)的能量 f2(t)。一般情况下,有
f n ( t ) = f n ′ ( t ) E n , f_n(t)=\frac{f_n'(t)}{\sqrt{E_n}}, fn(t)=En fn(t),这里 E n E_n En为信号
f n ′ ( t ) = s n ( t ) − ∑ i = 1 n − 1 c i n f i ( t ) f_n'(t)=s_n(t)-\sum_{i=1}^{n-1}c_{in}f_i(t) fn(t)=sn(t)i=1n1cinfi(t)的能量,而
c i n = ∫ − ∞ ∞ s n ( t ) f i ( t ) d t . c_{in}=\int_{-\infty}^{\infty}s_n(t)f_i(t)dt. cin=sn(t)fi(t)dt.

  由于 s 1 ( t ) = 2 E s 1 T b cos ⁡ 2 π f c t s_1(t)=\sqrt{\frac{2E_{s1}}{T_b}}\cos2\pi f_ct s1(t)=Tb2Es1 cos2πfct,我们得到
f 1 ( t ) = s 1 ( t ) E s 1 = 2 T b cos ⁡ 2 π f c t , f_1(t)=\frac{s_1(t)}{\sqrt{E_{s1}}}=\sqrt{\frac{2}{T_b}}\cos2\pi f_ct, f1(t)=Es1 s1(t)=Tb2 cos2πfct, s 2 ( t ) = 0 s_2(t)=0 s2(t)=0,得到 c 12 = 0 c_{12}=0 c12=0,因此 f 2 ( t ) = 0 f_2(t)=0 f2(t)=0。故可以得到一维正交函数集
{ f 1 ( t ) = 2 T b cos ⁡ 2 π f c t } ,   0 ≤ t ≤ T b . (2.2) \tag{2.2} {\Large \{}f_1(t)=\sqrt{\frac{2}{T_b}}\cos2\pi f_ct{\Large \}},\ 0\le t\le T_b. { f1(t)=Tb2 cos2πfct}, 0tTb.(2.2)

  • OOK信号的向量形式
      下面我们把 s i ( t ) , i = 1 , 2 s_i(t),i=1,2 si(t),i=1,2表示为向量形式,有
    s i = [ s i 1 ] ,   i = 1 , 2 {\bf s}_i=[s_{i1}],\ i=1,2 si=[si1], i=1,2这里 s i 1 = ∫ − ∞ ∞ s i ( t ) f 1 ( t ) d t s_{i1}=\int_{-\infty}^{\infty}s_i(t)f_1(t)dt si1=si(t)f1(t)dt为波形 s i ( t ) s_i(t) si(t)映射到 f 1 ( t ) f_1(t) f1(t)上的投影,因此,可得
    s 11 = ∫ − ∞ ∞ s 1 ( t ) f 1 ( t ) d t = E s 1 f 1 ( t ) = 2 E s f 1 ( t ) s 21 = 0 (2.3) \tag{2.3} \begin{aligned} s_{11}&=\int_{-\infty}^{\infty}s_1(t)f_1(t)dt=\sqrt{E_{s1}}f_1(t)=\sqrt{2E_{s}}f_1(t)\\ s_{21}&=0 \end{aligned} s11s21=s1(t)f1(t)dt=Es1 f1(t)=2Es f1(t)=0(2.3)所以我们可以将信号 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)分别映射为一维向量 s 1 {\bf s}_1 s1以及 s 2 {\bf s}_2 s2,即
    s 1 ( t ) = 2 E s 1 T b cos ⁡ 2 π f c t   →   s 1 = [ 2 E s ] s 2 ( t ) = 0 →   s 2 = [ 0 ] (2.4) \tag{2.4} \begin{aligned} s_1(t)=\sqrt{\frac{2E_{s1}}{T_b}}\cos2\pi f_ct\ &\rightarrow \ {\bf s}_{1}=[\sqrt{2E_{s}}]\\ s_{2}(t)=0&\rightarrow \ {\bf s}_2=[0] \end{aligned} s1(t)=Tb2Es1 cos2πfct s2(t)=0 s1=[2Es ] s2=[0](2.4)
  • OOK信号星座图
      由于 N = 1 N=1 N=1,因此信号空间为一维空间,可以画出两个信号对应的向量点,即星座图,如图1所示。显然,对于OOK信号,其两个信号 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)之间的互相关系数以及距离分别为
    ρ 12 = 0 (2.5) \tag{2.5} \rho_{12}=0 ρ12=0(2.5)以及 d 12 = E s 1 + E s 2 − 2 E s 1 E s 2 ρ 12 = E s 1 = 2 E s . (2.6) \tag{2.6} \begin{aligned} d_{12}&=\sqrt{E_{s1}+E_{s_2}-2\sqrt{E_{s1}E_{s2}}\rho_{12}}\\ &=\sqrt{E_{s1}}=\sqrt{2E_s}. \end{aligned} d12=Es1+Es22Es1Es2 ρ12 =Es1 =2Es .(2.6)从图1中,也很容易看出两个信号点之间的距离为 d 12 = 2 E s d_{12}=\sqrt{2E_s} d12=2Es
    在这里插入图片描述
    图1 OOK信号的星座图

3. 2PSK信号波形的向量表示

  • 2PSK发送信号波形
      2PSK发送信号为
    s ( t ) = { s 1 ( t ) = 2 E s T b cos ⁡ 2 π f c t " 1 " s 2 ( t ) = − 2 E s T b cos ⁡ 2 π f c t " 0 " (3.1) \tag{3.1} s(t)=\left\{ \begin{aligned}&s_1(t)=\sqrt{\frac{2E_{s}}{T_b}}\cos2\pi f_ct\quad &"1"\\ &s_2(t)=-\sqrt{\frac{2E_{s}}{T_b}}\cos2\pi f_ct\quad &"0" \end{aligned} \right. s(t)=s1(t)=Tb2Es cos2πfcts2(t)=Tb2Es cos2πfct"1""0"(3.1)显然,对于2PSK信号,有平均符号能量 E s = E s 1 = E s 2 E_s=E_{s1}=E_{s2} Es=Es1=Es2
  • 完备标准正交函数集
      与OOK类似,我们构造一维正交函数集
    { f 1 ( t ) = 2 T b cos ⁡ 2 π f c t } ,   0 ≤ t ≤ T b . (3.2) \tag{3.2} {\Large \{}f_1(t)=\sqrt{\frac{2}{T_b}}\cos2\pi f_ct{\Large \}},\ 0\le t\le T_b. { f1(t)=Tb2 cos2πfct}, 0tTb.(3.2)
  • 2PSK信号的向量形式
      由于
    s 1 ( t ) = E s f 1 ( t ) s 2 ( t ) = − E s f 1 ( t ) (3.3) \tag{3.3} \begin{aligned} s_1(t)&=\sqrt{E_s}f_1(t)\\ s_2(t)&=-\sqrt{E_s}f_1(t) \end{aligned} s1(t)s2(t)=Es f1(t)=Es f1(t)(3.3)我们可以将信号 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)分别映射为一维向量 s 1 {\bf s}_1 s1以及 s 2 {\bf s}_2 s2,即
    s 1 ( t ) = 2 E s 1 T b cos ⁡ 2 π f c t   →   s 1 = [ E s ] s 2 ( t ) = − 2 E s 1 T b cos ⁡ 2 π f c t   →   s 2 = [ − E s ] (3.4) \tag{3.4} \begin{aligned} s_1(t)&=\sqrt{\frac{2E_{s1}}{T_b}}\cos2\pi f_ct\ &\rightarrow \ {\bf s}_{1}=[\sqrt{E_{s}}]\\ s_2(t)&=-\sqrt{\frac{2E_{s1}}{T_b}}\cos2\pi f_ct\ &\rightarrow \ {\bf s}_{2}=[-\sqrt{E_{s}}] \end{aligned} s1(t)s2(t)=Tb2Es1 cos2πfct =Tb2Es1 cos2πfct  s1=[Es ] s2=[Es ](3.4)
    `- 2PSK信号的星座图
      2PSK信号的星座图,如图2所示。显然,对于2PSK信号,其两个信号 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)之间的互相关系数以及距离分别为
    ρ 12 = − 1 (3.5) \tag{3.5} \rho_{12}=-1 ρ12=1(3.5)以及 d 12 = 2 E s ( 1 − ρ 12 ) = 2 E s . (3.6) \tag{3.6} \begin{aligned} d_{12}&=\sqrt{2E_{s}(1-\rho_{12})}=2\sqrt{E_s}. \end{aligned} d12=2Es1ρ12) =2Es .(3.6)
    在这里插入图片描述
图2 2PSK信号星座图

4. 正交2FSK信号波形的向量表示

  • 正交2FSK信号波形
      设2FSK信号为
    s i ( t ) = 2 E s T s cos ⁡ 2 π f i t , (4.1) \tag{4.1} s_i(t)=\sqrt{\frac{2E_{s}}{T_s}}\cos2\pi f_i t, si(t)=Ts2Es cos2πfit,(4.1)这里, f 1 = f c + Δ f 2 f_1=f_c+\frac{\Delta f}{2} f1=fc+2Δf f 2 = f c − Δ f 2 f_2=f_c-\frac{\Delta f}{2} f2=fc2Δf。显然,对于2FSK信号,有平均符号能量 E s = E s 1 = E s 2 E_s=E_{s1}=E_{s2} Es=Es1=Es2
      为了定义正交2FSK信号,我们来看 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)的相关系数
    ρ 12 = 1 E s ∫ 0 T s s 1 ( t ) s 2 ( t ) d t = 2 T s ∫ 0 T s cos ⁡ ( 2 π f 1 t ) cos ⁡ ( 2 π f 2 t ) d t = 1 T s ∫ 0 T s [ cos ⁡ 2 π ( f 1 + f 2 ) t + cos ⁡ 2 π ( f 1 − f 2 ) t ] d t = 1 T s ∫ 0 T s [ cos ⁡ 2 π f c t + cos ⁡ 2 π Δ f t ] d t ≈ 1 T s ∫ 0 T s cos ⁡ 2 π Δ f t   d t = S a ( 2 π ⋅ Δ f ⋅ T s ) (4.2) \tag{4.2} \begin{aligned} \rho_{12}&=\frac{1}{E_s}\int_{0}^{T_s}s_1(t)s_2(t)dt\\ &=\frac{2}{T_s}\int_{0}^{T_s}\cos (2\pi f_1t)\cos (2\pi f_2t)dt\\ &=\frac{1}{T_s}\int_{0}^{T_s}[\cos 2\pi (f_1+f_2)t +\cos 2\pi (f_1-f_2)t]dt\\ &=\frac{1}{T_s}\int_{0}^{T_s}[\cos 2\pi f_ct +\cos 2\pi \Delta ft ]dt\\ &\approx \frac{1}{T_s}\int_{0}^{T_s}\cos 2\pi \Delta ft \ dt\\ &={\rm Sa}(2\pi \cdot \Delta f\cdot T_s) \end{aligned} ρ12=Es10Tss1(t)s2(t)dt=Ts20Tscos(2πf1t)cos(2πf2t)dt=Ts10Ts[cos2π(f1+f2)t+cos2π(f1f2)t]dt=Ts10Ts[cos2πfct+cos2πΔft]dtTs10Tscos2πΔft dt=Sa(2πΔfTs)(4.2)为了保证 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)正交,有 ρ 12 = 0 \rho_{12}=0 ρ12=0,因此 Δ f = k ⋅ 1 2 T s \Delta f=k\cdot \frac{1}{2T_s} Δf=k2Ts1,这里 k k k为任意不为零整数。
  • 完备标准正交函数集
      对于正交2FSK信号,我们构造二维正交函数集
    f 1 ( t ) = 2 T b cos ⁡ 2 π f 1 t , 0 ≤ t ≤ T s . f 2 ( t ) = 2 T b cos ⁡ 2 π f 2 t , 0 ≤ t ≤ T s . (4.3) \tag{4.3} f_1(t)=\sqrt{\frac{2}{T_b}}\cos2\pi f_1t,\quad 0\le t\le T_s.\\ f_2(t)=\sqrt{\frac{2}{T_b}}\cos2\pi f_2t,\quad 0\le t\le T_s. f1(t)=Tb2 cos2πf1t,0tTs.f2(t)=Tb2 cos2πf2t,0tTs.(4.3)
  • 正交2FSK信号的向量形式
      由于
    s 1 ( t ) = E s f 1 ( t ) s 2 ( t ) = E s f 2 ( t ) (4.4) \tag{4.4} \begin{aligned} s_1(t)&=\sqrt{E_s}f_1(t)\\ s_2(t)&=\sqrt{E_s}f_2(t) \end{aligned} s1(t)s2(t)=Es f1(t)=Es f2(t)(4.4)我们可以将信号 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)分别映射为一维向量 s 1 {\bf s}_1 s1以及 s 2 {\bf s}_2 s2,即
    s 1 ( t ) = 2 E s 1 T b cos ⁡ 2 π f c t   →   s 1 = [ E s , 0 ] s 2 ( t ) = − 2 E s 1 T b cos ⁡ 2 π f c t   →   s 2 = [ 0 , E s ] (3.4) \tag{3.4} \begin{aligned} s_1(t)&=\sqrt{\frac{2E_{s1}}{T_b}}\cos2\pi f_ct\ &\rightarrow \ {\bf s}_{1}=[\sqrt{E_{s}},0]\\ s_2(t)&=-\sqrt{\frac{2E_{s1}}{T_b}}\cos2\pi f_ct\ &\rightarrow \ {\bf s}_{2}=[0,\sqrt{E_{s}}] \end{aligned} s1(t)s2(t)=Tb2Es1 cos2πfct =Tb2Es1 cos2πfct  s1=[Es ,0] s2=[0,Es ](3.4)
    `- 正交2FSK信号的星座图
      正交2FSK信号的星座图如图3所示。显然, s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)之间的互相关系数 ρ 12 = 0 \rho_{12}=0 ρ12=0,距离 d 12 = 2 E s ( 1 − ρ 12 ) = 2 E s . d_{12}=\sqrt{2E_{s}(1-\rho_{12})}=\sqrt{2E_s}. d12=2Es1ρ12) =2Es .
    在这里插入图片描述
图3 正交2PSK信号星座图

  比较2ASK、2PSK以及正交2FSK这三种信号,我们会发现,在信号平均能量 E s E_s Es相等的情况下,2ASK和2FSK这两种调制方式中,两个信号点之间的欧式距离相等,均为 2 E s \sqrt{2E_s} 2Es ;而对于2PSK调制,两个信号点之间欧式距离为 2 E s 2\sqrt{E_s} 2Es ,事实上,这也是为什么采用相干解调时,2PSK的误码性能最好的原因。

猜你喜欢

转载自blog.csdn.net/tanghonghanhaoli/article/details/111595498