阿里+腾讯+美团最爱问的MySQL+Redis面试题,社招+春招+秋招合集!

什么是MySQL?

  • MySQL 是⼀种关系型数据库,在Java企业级开发中⾮常常⽤,因为 MySQL 是开源免费的,并且⽅便扩展。阿⾥巴巴数据库系统也⼤量⽤到了 MySQL,因此它的稳定性是有保障的。MySQL是开放源代码的,因此任何⼈都可以在 GPL(General Public License) 的许可下下载并根据个性化的需要对其进⾏修改。MySQL的默认端⼝号是3306。

MyISAM和InnoDB区别

  • MyISAM是MySQL的默认数据库引擎(5.5版之前)。虽然性能极佳,⽽且提供了⼤量的特性,包括全⽂索引、压缩、空间函数等,但MyISAM不⽀持事务和⾏级锁,⽽且最⼤的缺陷就是崩溃后⽆法安全恢复。不过,5.5版本之后,MySQL引⼊了InnoDB(事务性数据库引擎),MySQL 5.5版本后默认的存储引擎为InnoDB。
  • ⼤多数时候我们使⽤的都是 InnoDB 存储引擎,但是在某些情况下使⽤ MyISAM 也是合适的⽐如读密集的情况下。(如果你不介意 MyISAM 崩溃恢复问题的话)。

两者的对⽐:

  • 是否⽀持⾏级锁 : MyISAM 只有表级锁(table-level locking),⽽InnoDB ⽀持⾏级锁(rowlevel locking)和表级锁,默认为⾏级锁。
  • 是否⽀持事务和崩溃后的安全恢复: MyISAM 强调的是性能,每次查询具有原⼦性,其执⾏速度⽐InnoDB类型更快,但是不提供事务⽀持。但是InnoDB 提供事务⽀持事务,外部键等⾼级数据库功能。 具有事务(commit)、回滚(rollback)和崩溃修复能⼒(crash recovery capabilities)的事务安全(transaction-safe (ACID compliant))型表。
  • 是否⽀持外键: MyISAM不⽀持,⽽InnoDB⽀持。
  • 是否⽀持MVCC :仅 InnoDB ⽀持。应对⾼并发事务, MVCC⽐单纯的加锁更⾼效;MVCC只在READ COMMITTED 和 REPEATABLE READ 两个隔离级别下⼯作;MVCC可以使⽤ 乐观(optimistic)锁 和 悲观(pessimistic)锁来实现;各数据库中MVCC实现并不统⼀。

字符集及校对规则

  • 字符集指的是⼀种从⼆进制编码到某类字符符号的映射。校对规则则是指某种字符集下的排序规则。MySQL中每⼀种字符集都会对应⼀系列的校对规则。
  • MySQL采⽤的是类似继承的⽅式指定字符集的默认值,每个数据库以及每张数据表都有⾃⼰的默认值,他们逐层继承。⽐如:某个库中所有表的默认字符集将是该数据库所指定的字符集(这些表在没有指定字符集的情况下,才会采⽤默认字符集)

讲一下索引

  • MySQL索引使⽤的数据结构主要有BTree索引 和 哈希索引 。对于哈希索引来说,底层的数据结构就是
    哈希表,因此在绝⼤多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余⼤部分
    场景,建议选择BTree索引。

MySQL的BTree索引使⽤的是B树中的B+Tree,但对于主要的两种存储引擎的实现⽅式是不同的。

  • MyISAM: B+Tree叶节点的data域存放的是数据记录的地址。在索引检索的时候,⾸先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“⾮聚簇索引”。
  • InnoDB: 其数据⽂件本身就是索引⽂件。相⽐MyISAM,索引⽂件和数据⽂件是分离的,其表数据⽂件本身就是按B+Tree组织的⼀个索引结构,树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据⽂件本身就是主索引。这被称为“聚簇索引(或聚集索引)”。⽽其余的索引都作为ᬀ助索引,ᬀ助索引的data域存储相应记录主键的值⽽不是地址,这也是和MyISAM不同的地⽅。在根据主索引搜索时,直接找到key所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再⾛⼀遍主索引。 因此,在设计表的时候,不建议使⽤过⻓的字段作为主键,也不建议使⽤⾮单调的字段作为主键,这样会造成主索引频繁分裂。

什么是事务?

  • 事务是逻辑上的⼀组操作,要么都执⾏,要么都不执⾏。
  • 事务最经典也经常被拿出来说例⼦就是转账了。假如⼩明要给⼩红转账1000元,这个转账会涉及到两个关键操作就是:将⼩明的余额减少1000元,将⼩红的余额增加1000元。万⼀在这两个操作之间突然出现错误⽐如银⾏系统崩溃,导致⼩明余额减少⽽⼩红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。

事物的四⼤特性(ACID)

  • 原⼦性(Atomicity): 事务是最⼩的执⾏单位,不允许分割。事务的原⼦性确保动作要么全部完成,要么完全不起作⽤;
  • ⼀致性(Consistency): 执⾏事务前后,数据保持⼀致,多个事务对同⼀个数据读取的结果是相同的;
  • 隔离性(Isolation): 并发访问数据库时,⼀个⽤户的事务不被其他事务所⼲扰,各并发事务之间数据库是独⽴的;
  • 持久性(Durability): ⼀个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发⽣故障也不应该对其有任何影响。

并发事务带来哪些问题?

在典型的应⽤程序中,多个事务并发运⾏,经常会操作相同的数据来完成各⾃的任务(多个⽤户对同⼀数据进⾏操作)。并发虽然是必须的,但可能会导致以下的问题。

  • 脏读(Dirty read): 当⼀个事务正在访问数据并且对数据进⾏了修改,⽽这种修改还没有提交到数据库中,这时另外⼀个事务也访问了这个数据,然后使⽤了这个数据。因为这个数据是还没有提交的数据,那么另外⼀个事务读到的这个数据是“脏数据”,依据“脏数据”所做的操作可能是不正确的。
  • 丢失修改(Lost to modify): 指在⼀个事务读取⼀个数据时,另外⼀个事务也访问了该数据,那么在第⼀个事务中修改了这个数据后,第⼆个事务也修改了这个数据。这样第⼀个事务内的修改结果就被丢失,因此称为丢失修改。 例如:事务1读取某表中的数据A=20,事务2也读取A=20,事务1修改A=A-1,事务2也修改A=A-1,最终结果A=19,事务1的修改被丢失。
  • 不可重复读(Unrepeatableread): 指在⼀个事务内多次读同⼀数据。在这个事务还没有结束时,另⼀个事务也访问该数据。那么,在第⼀个事务中的两次读数据之间,由于第⼆个事务的修改导致第⼀个事务两次读取的数据可能不太⼀样。这就发⽣了在⼀个事务内两次读到的数据是不⼀样的情况,因此称为不可重复读。
  • 幻读(Phantom read): 幻读与不可重复读类似。它发⽣在⼀个事务(T1)读取了⼏⾏数据,接着另⼀个并发事务(T2)插⼊了⼀些数据时。在随后的查询中,第⼀个事务(T1)就会发现多了⼀些原本不存在的记录,就好像发⽣了幻觉⼀样,所以称为幻读。

不可重复读和幻读区别:

  • 不可重复读的重点是修改⽐如多次读取⼀条记录发现其中某些列的值被修改,幻读的重点在于新增或者删除⽐如多次读取⼀条记录发现记录增多或减少了。

事务隔离级别有哪些?MySQL的默认隔离级别是?

  • READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
  • READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻⽌脏读,但是幻读或不可重复读仍有可能发⽣。
  • REPEATABLE-READ(可重复读): 对同⼀字段的多次读取结果都是⼀致的,除⾮数据是被本身事务⾃⼰所修改,可以阻⽌脏读和不可重复读,但幻读仍有可能发⽣。
  • SERIALIZABLE(可串⾏化): 最⾼的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执⾏,这样事务之间就完全不可能产⽣⼲扰,也就是说,该级别可以防⽌脏读、不可重复读以及幻读。

    MySQL InnoDB 存储引擎的默认⽀持的隔离级别是 REPEATABLE-READ(可重读)。我们可以通过SELECT @@tx_isolation; 命令来查看

锁机制与InnoDB锁算法

MyISAM和InnoDB存储引擎使⽤的锁:

  • MyISAM采⽤表级锁(table-level locking)。
  • InnoDB⽀持⾏级锁(row-level locking)和表级锁,默认为⾏级锁

表级锁和⾏级锁对⽐:

  • 表级锁: MySQL中锁定 粒度最⼤ 的⼀种锁,对当前操作的整张表加锁,实现简单,资源消耗也⽐锁少,加锁快,不会出现死锁。其锁定粒度最⼤,触发锁冲突的概率最⾼,并发度最低,MyISAM和 InnoDB引擎都⽀持表级锁。
  • ⾏级锁: MySQL中锁定 粒度最⼩ 的⼀种锁,只针对当前操作的⾏进⾏加锁。 ⾏级锁能⼤⼤减少数据库操作的冲突。其加锁粒度最⼩,并发度⾼,但加锁的开销也最⼤,加锁慢,会出现死锁。

InnoDB存储引擎的锁的算法有三种:

  • Record lock:单个⾏记录上的锁
  • Gap lock:间隙锁,锁定⼀个范围,不包括记录本身
  • Next-key lock:record+gap 锁定⼀个范围,包含记录本身

相关知识点:

  • innodb对于⾏的查询使⽤next-key lock
  • Next-locking keying为了解决Phantom Problem幻读问题
  • 当查询的索引含有唯⼀属性时,将next-key lock降级为record key
  • Gap锁设计的⽬的是为了阻⽌多个事务将记录插⼊到同⼀范围内,⽽这会导致幻读问题的产⽣
  • 有两种⽅式显式关闭gap锁:(除了外键约束和唯⼀性检查外,其余情况仅使⽤record lock)A. 将事务隔离级别设置为RC B. 将参数innodb_locks_unsafe_for_binlog设置为1

限定数据的范围

  • 务必禁⽌不带任何限制数据范围条件的查询语句。⽐如:我们当⽤户在查询订单历史的时候,我们可以控制在⼀个⽉的范围内;

读/写分离

  • 经典的数据库拆分⽅案,主库负责写,从库负责读;

垂直分区

  • 根据数据库⾥⾯数据表的相关性进⾏拆分。 例如,⽤户表中既有⽤户的登录信息⼜有⽤户的基本信息,可以将⽤户表拆分成两个单独的表,甚⾄放到单独的库做分库。简单来说垂直拆分是指数据表列的拆分,把⼀张列⽐较多的表拆分为多张表。 如下图所示,这样来说⼤家应该就更容易理解了。
  • 垂直拆分的优点: 可以使得列数据变⼩,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。
  • 垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应⽤层进⾏Join来解决。此外,垂直分区会让事务变得更加复杂;

⽔平分区

  • 保持数据表结构不变,通过某种策略存储数据分⽚。这样每⼀⽚数据分散到不同的表或者库中,达到了分布式的⽬的。 ⽔平拆分可以⽀撑⾮常⼤的数据量。
  • ⽔平拆分是指数据表⾏的拆分,表的⾏数超过200万⾏时,就会变慢,这时可以把⼀张的表的数据拆成多张表来存放。举个例⼦:我们可以将⽤户信息表拆分成多个⽤户信息表,这样就可以避免单⼀表数据量过⼤对性能造成影响。

    ⽔平拆分可以⽀持⾮常⼤的数据量。需要注意的⼀点是:分表仅仅是解决了单⼀表数据过⼤的问题,但由于表的数据还是在同⼀台机器上,其实对于提升MySQL并发能⼒没有什么意义,所以 ⽔平拆分最好分库 。

解释⼀下什么是池化设计思想。什么是数据库连接池?为什么需要数据库连接池?

  • 池化设计应该不是⼀个新名词。我们常⻅的如java线程池、jdbc连接池、redis连接池等就是这类设计的代表实现。这种设计会初始预设资源,解决的问题就是抵消每次获取资源的消耗,如创建线程的开销,获取远程连接的开销等。就好⽐你去⻝堂打饭,打饭的⼤妈会先把饭盛好⼏份放那⾥,你来了就直接拿着饭盒加菜即可,不⽤再临时⼜盛饭⼜打菜,效率就⾼了。除了初始化资源,池化设计还包括如下这些特征:池⼦的初始值、池⼦的活跃值、池⼦的最⼤值等,这些特征可以直接映射到java线程池和数据库连接池的成员属性中。这篇⽂章对池化设计思想介绍的还不错,直接复制过来,避免重复造轮⼦了。
  • 数据库连接本质就是⼀个 socket 的连接。数据库服务端还要维护⼀些缓存和⽤户权限信息之类的 所以占⽤了⼀些内存。我们可以把数据库连接池是看做是维护的数据库连接的缓存,以便将来需要对数据库的请求时可以重⽤这些连接。为每个⽤户打开和维护数据库连接,尤其是对动态数据库驱动的⽹站应⽤程序的请求,既昂贵⼜浪费资源。在连接池中,创建连接后,将其放置在池中,并再次使⽤它,因此不必建⽴新的连接。如果使⽤了所有连接,则会建⽴⼀个新连接并将其添加到池中。 连接池还减少了⽤户必须等待建⽴与数据库的连接的时间。

redis 简介

  • 简单来说 redis 就是⼀个数据库,不过与传统数据库不同的是 redis 的数据是存在内存中的,所以读写速度⾮常快,因此 redis 被⼴泛应⽤于缓存⽅向。另外,redis 也经常⽤来做分布式锁。redis 提供了多种数据类型来⽀持不同的业务场景。除此之外,redis ⽀持事务 、持久化、LUA脚本、LRU驱动事件、多种集群⽅案。

为什么要⽤ redis/为什么要⽤缓存

  • 主要从“⾼性能”和“⾼并发”这两点来看待这个问题。

⾼性能:

  • 假如⽤户第⼀次访问数据库中的某些数据。这个过程会⽐᫾慢,因为是从硬盘上读取的。将该⽤户访问的数据存在缓存中,这样下⼀次再访问这些数据的时候就可以直接从缓存中获取了。操作缓存就是直接操作内存,所以速度相当快。如果数据库中的对应数据改变的之后,同步改变缓存中相应的数据即可!

⾼并发:

  • 直接操作缓存能够承受的请求是远远⼤于直接访问数据库的,所以我们可以考虑把数据库中的部分数据转移到缓存中去,这样⽤户的⼀部分请求会直接到缓存这⾥⽽不⽤经过数据库。

为什么要⽤ redis ⽽不⽤ map/guava 做缓存?

  • 缓存分为本地缓存和分布式缓存。以 Java 为例,使⽤⾃带的 map 或者 guava 实现的是本地缓存,最主要的特点是轻量以及快速,⽣命周期随着 jvm 的销毁⽽结束,并且在多实例的情况下,每个实例都需要各⾃保存⼀份缓存,缓存不具有⼀致性。
  • 使⽤ redis 或 memcached 之类的称为分布式缓存,在多实例的情况下,各实例共⽤⼀份缓存数据,缓存具有⼀致性。缺点是需要保持 redis 或 memcached服务的⾼可⽤,整个程序架构上᫾为复杂。

redis 和 memcached 的区别

  • redis⽀持更丰富的数据类型(⽀持更复杂的应⽤场景):Redis不仅仅⽀持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。memcache⽀持简单的数据类型,String。
  • Redis⽀持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进⾏使⽤,⽽Memecache把数据全部存在内存之中。
  • 集群模式:memcached没有原⽣的集群模式,需要依靠客户端来实现往集群中分⽚写⼊数据;但是 redis ⽬前是原⽣⽀持 cluster 模式的.
  • Memcached是多线程,⾮阻塞IO复⽤的⽹络模型;Redis使⽤单线程的多路 IO 复⽤模型。

redis 事务

  • Redis 通过 MULTI、EXEC、WATCH 等命令来实现事务(transaction)功能。事务提供了⼀种将多个命令请求打包,然后⼀次性、按顺序地执⾏多个命令的机制,并且在事务执⾏期间,服务器不会中断事务⽽改去执⾏其他客户端的命令请求,它会将事务中的所有命令都执⾏完毕,然后才去处理其他客户端的命令请求。
  • 在传统的关系式数据库中,常常⽤ ACID 性质来检验事务功能的可靠性和安全性。在 Redis 中,事务总是具有原⼦性(Atomicity)、⼀致性(Consistency)和隔离性(Isolation),并且当 Redis 运⾏在某种特定的持久化模式下时,事务也具有持久性(Durability)。

缓存雪崩和缓存穿透问题解决⽅案

缓存雪崩

简介:缓存同⼀时间⼤⾯积的失效,所以,后⾯的请求都会落到数据库上,造成数据库短时间内承受⼤量请求⽽崩掉。

解决方案

  • 事前:尽量保证整个 redis 集群的⾼可⽤性,发现机器宕机尽快补上。选择合适的内存淘汰策略。
  • 事中:本地ehcache缓存 + hystrix限流&降级,避免MySQL崩掉
  • 事后:利⽤ redis 持久化机制保存的数据尽快恢复缓存

缓存穿透

  • 缓存穿透说简单点就是⼤量请求的 key 根本不存在于缓存中,导致请求直接到了数据库上,根本没有经过缓存这⼀层。举个例⼦:某个⿊客故意制造我们缓存中不存在的 key 发起⼤量请求,导致⼤量请求落到数据库。下⾯⽤图⽚展示⼀下(这两张图⽚不是我画的,为了省事直接在⽹上找的,这⾥说明⼀下):

    缓存穿透情况处理流程:

如何解决 Redis 的并发竞争 Key 问题

  • 所谓 Redis 的并发竞争 Key 的问题也就是多个系统同时对⼀个 key 进⾏操作,但是最后执⾏的顺序和我们期望的顺序不同,这样也就导致了结果的不同!推荐⼀种⽅案:分布式锁(zookeeper 和 redis 都可以实现分布式锁)。(如果不存在 Redis 的并发竞争 Key 问题,不要使⽤分布式锁,这样会影响性能)
  • 基于zookeeper临时有序节点可以实现的分布式锁。⼤致思想为:每个客户端对某个⽅法加锁时,在zookeeper上的与该⽅法对应的指定节点的⽬录下,⽣成⼀个唯⼀的瞬时有序节点。 判断是否获取锁的⽅式很简单,只需要判断有序节点中序号最⼩的⼀个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁⽆法释放,⽽产⽣的死锁问题。完成业务流程后,删除对应的⼦节点释放锁。
  • 在实践中,当然是从以可靠性为主。所以⾸推Zookeeper。

总结

感谢你看到这里,文章有什么不足还请指正,觉得文章对你有帮助的话记得给我点个三连!

最后我为大家准备了ava核心知识点+全套架构师学习资料和视频+一线大厂面试宝典+面试简历模板+阿里美团网易腾讯小米爱奇艺快手哔哩哔哩面试题+Spring源码合集+Java架构实战电子书一起免费分享给大家!有需要的朋友点这里备注csdn自行下载即可,小编每天都会分享java相关技术文章或行业资讯,欢迎大家关注和转发文章!

猜你喜欢

转载自blog.csdn.net/jiagouwgm/article/details/113883704