Control of untethered magnetically actuated tool with localization uncertainty using a rotating perm

本文主要阐述了在旋转磁场下,探究被动旋转磁铁的定位不确定的情况下,对被动磁铁所在的胶囊的控制能力的关系。推导并总结了,在不确定定位的情况下,旋转轴不对齐的最坏情况,磁场大小的最坏情况,和磁场旋转速度的最坏情况

用一个旋转永磁铁对带有定位不确定度的无线磁性被驱动器的控制
Control of untethered magnetically actuated tool with localization uncertainty using a rotating permanent magnet [1]
Paper Link
Authors: Arthur W. Mahoney, etc.
2012,4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics

在任何应用中,MAT定位将受不确定性影响,不确定性由传感器噪音,低速更新率,和/或定位失败导致的。在这篇文章中,我们开发和实验性证实旋转极子场的性质的最坏边界,给定一个在定位误差方面的最坏边界,它被用来设计减少在已知定位不确定性面前不期望的MAT行为的运行过程。
In any application, MAT localization will be subject to uncertainty caused by sensor noise, slow update rates, and/or localization failure. In this paper, we develop and experimentally verify worst-case bounds on properties of the rotating dipole field, given a worst-case bound on localization error, which can be used to design operating procedures that mitigate undesired MAT behavior in the presence of known localization uncertainty.

磁极子模型:

b c = μ 0 ∣ ∣ m a ∣ ∣ 4 π ∥ p ∥ 3 ( 3 p ^ p ^ T − I ) m a ^ \bold{b}_{c}=\frac{\mu_{0}||\bold{m}_{a}||}{4\pi{\|\bold{p}\|}^{3}}(3\widehat{\bold{p}}\widehat{\bold{p}}^{T}-\bold{I})\widehat{\bold{m}_{a}} bc=4πp3μ0ma(3p p TI)ma

必要的 ω a ^ \widehat{\boldsymbol{\omega}_{a}} ωa 使在 p \bold{p} p获得 ω c ^ \widehat{\boldsymbol{\omega}_{c}} ωc
necessary ω a ^ \widehat{\boldsymbol{\omega}_{a}} ωa that achieves ω c ^ \widehat{\boldsymbol{\omega}_{c}} ωc at p \bold{p} p:

ω a ^ = ( 3 p ^ p ^ T − I ) ω c ^ ^ \widehat{\boldsymbol{\omega}_{a}}=\widehat{(3\widehat{\bold{p}}\widehat{\bold{p}}^{T}-\bold{I})\widehat{\boldsymbol{\omega}_{c}}} ωa =(3p p TI)ωc

在任何给定MAT位置,瞬时场大小 ∣ ∣ b c ∣ ∣ ||\boldsymbol{b}_{c}|| bc以一个椭圆波动当RPM绕 ω a ^ \widehat{\boldsymbol{\omega}_{a}} ωa 旋转的时候:
At any given MAT position, the instantaneous field magnitude ∣ ∣ b c ∣ ∣ ||\boldsymbol{b}_{c}|| bc fluctuates in an elliptical fashion as the RPM rotates around ω a ^ \widehat{\boldsymbol{\omega}_{a}} ωa :

∣ ∣ b c ∣ ∣ = μ 0 ∣ ∣ m a ∣ ∣ 4 π ∥ p ∥ 3 1 + 3 ( ω a ^ T p ^ ) 2 ||\bold{b}_{c}||=\frac{\mu_{0}||\bold{m}_{a}||}{4\pi{\|\bold{p}\|}^{3}}\sqrt{1+3(\widehat{\boldsymbol{\omega}_{a}}^{T}\widehat{\bold{p}})^{2}} bc=4πp3μ0ma1+3(ωa Tp )2

∣ ∣ b c ∣ ∣ m i n = μ 0 ∣ ∣ m a ∣ ∣ 4 π ∥ p ∥ 3 ||\bold{b}_{c}||_{min}=\frac{\mu_{0}||\bold{m}_{a}||}{4\pi{\|\bold{p}\|}^{3}} bcmin=4πp3μ0ma

∣ ∣ b c ∣ ∣ m a x = μ 0 ∣ ∣ m a ∣ ∣ 4 π ∥ p ∥ 3 1 + 3 ⋅ m a x ( ω a ^ T p ^ ) 2 ||\bold{b}_{c}||_{max}=\frac{\mu_{0}||\bold{m}_{a}||}{4\pi{\|\bold{p}\|}^{3}}\sqrt{1+3 \cdot max(\widehat{\boldsymbol{\omega}_{a}}^{T}\widehat{\bold{p}})^{2}} bcmax=4πp3μ0ma1+3max(ωa Tp )2

ω \boldsymbol{\omega} ω Ω \boldsymbol{\Omega} Ω代表本地场和RPM的瞬时角速度:
ω \boldsymbol{\omega} ω and Ω \boldsymbol{\Omega} Ω donate the instantaneous angular velocity of the local field and the RPM:

∣ ∣ ω ∣ ∣ = ∣ ∣ b c ∣ ∣ m i n ∣ ∣ b c ∣ ∣ m a x ∣ ∣ b c ∣ ∣ 2 ∣ ∣ Ω ∣ ∣ ||\boldsymbol{\omega}||=\frac{||\bold{b}_{c}||_{min}||\bold{b}_{c}||_{max}}{||\bold{b}_{c}||^{2}}||\boldsymbol{\Omega}|| ω=bc2bcminbcmaxΩ

在一个RPM产生的不均匀磁场中,本地场旋转轴,瞬时场大小,和瞬时场旋转速度变化依赖于MAT位置 p \textbf{p} p,在期望MAT位置和实际MAT位置之间的误差可能导致不期望的MAT行为。我们展示了基于上面所有三个因子的最坏情况边界,如果MAT已知在一个半径为 r r r的球内,球中心在期望位置 p \textbf{p} p r < ∣ ∣ p ∣ ∣ r<||\textbf{p}|| r<p θ \theta θ测量期望MAT位置 p \textbf{p} p和RPM旋转轴 m a ^ \widehat{\bold{m}_{a}} ma 之间的夹角,比值 r / ∣ ∣ p ∣ ∣ r/||\textbf{p}|| r/p描述在MAT位置的相对不确定性。
In nonuniform fields generated by an RPM, the local field rotation axis, the instantaneous field magnitude, and the instantaneous field rotation speed very depending on the MAT position p \textbf{p} p. Error between the expected MAT position and actual MAT position may cause undesired MAT behavior. We present worst-case bounds on all three factors above if the MAT is known to reside in a ball of radius r r r, centered at the expected position p \textbf{p} p, r < ∣ ∣ p ∣ ∣ r<||\textbf{p}|| r<p. θ \theta θ measures the angle between the expected MAT position p \textbf{p} p and the RPM rotation axis m a ^ \widehat{\bold{m}_{a}} ma , and the ratio r / ∣ ∣ p ∣ ∣ r/||\textbf{p}|| r/p describes the relative uncertainty in the MAT position.

A. 转轴不对齐的最坏情况 Worst-case in rotation axis misalignment
最坏的边界定义为不确定性球内任意位置产生的施加磁场旋转轴方向与球中心期望位置产生的施加磁场旋转轴方向之间的夹角。随着 r / ∣ ∣ p ∣ ∣ r/||\textbf{p}|| r/p变大,最坏的边界也在变大。随着期望MAT位置 p \textbf{p} p和RPM旋转轴 m a ^ \widehat{\bold{m}_{a}} ma 之间的夹角 θ \theta θ 0 ∘ 0^{\circ} 0 18 0 ∘ 180^{\circ} 180变化,我们发现,在 9 0 ∘ 90^{\circ} 90时,最坏边界最小。所以增大 r / ∣ ∣ p ∣ ∣ r/||\textbf{p}|| r/p且使施加磁场最好在主动磁铁下方。

B. 磁场大小的最坏情况 Worst-case in field magnitude
最坏边界定义为不确定性球内所能产生的最小归一化磁场强度,是为了保证能驱动磁铁。显然,最坏的磁场大小发生在不确定性球内离主动磁铁的最远端。且最小磁场的大小与夹角 θ \theta θ无关。

C. 磁场旋转速度的最坏情况 Worst-case in field rotation speed
最坏边界定义为不确定性球内所能产生的最大归一化磁场速度,是为了保证速度不过快使磁铁失步。不确定求内的任何点的最大速度都应该小于MAT的最大同步速度。不确定性球变大,最坏边界变大,在夹角 θ \theta θ 9 0 ∘ 90^{\circ} 90时,边界最大。

[1]: Mahoney, Arthur W., and Jake J. Abbott. “Control of untethered magnetically actuated tools with localization uncertainty using a rotating permanent magnet.” 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE, 2012.

猜你喜欢

转载自blog.csdn.net/qq_33188388/article/details/102746711