D-S evidence theory

D-S证据理论的基本概念

定义1: basic possibility assignment (BPA)
Let U be discernment frame, a function m : 2 u → [ 0 , 1 ] m: 2^u\rightarrow[0,1] m:2u[0,1] follows the two conditions:
(1) m ( ϕ ) = 0 m(\phi)=0 m(ϕ)=0
(2) ∑ A ⊂ U m ( A ) = 1 \sum_{A\subset U}m(A)=1 AUm(A)=1
then m ( A ) m(A) m(A) denotes 根本赋值 to A, m(A)=0 denotes as the belief degree to A, that is mass function。

定义2 信任函数 (Belief Function)

定义3 似然函数(Plausibility Function)

定义4 信任区间(Belief Interval)
 [Bel(A),pl(A)]表示命题A的信任区间,Bel(A)表示信任函数为下限,pl(A)表示似真函数为上限。
 举例:如(0.25,0.85),表示A为真有0.25的信任度,A为假有0.15的信任度,A不确定度为0.6。

D-S证据理论的组合规则

BPA from the different sources can be combined with the Dempster orthogonal rule, which incorporates the joint information provided by the sources and can be represented as follows:
m 1 , 2 ( ∅ ) = 0 m 1 , 2 ( A ) = ( m 1 ⊕ m 2 ) ( A ) = 1 1 − K ∑ B ∩ C = A ≠ ∅ m 1 ( B ) m 2 ( C ) \begin{array}{l} m_{1,2}(\emptyset) = 0\\ m_{1,2}(A) = (m_1 \oplus m_2) (A) = \frac 1 {1 - K} \sum_{B \cap C = A \ne \emptyset} m_1(B) m_2(C) \end{array} m1,2()=0m1,2(A)=(m1m2)(A)=1K1BC=A=m1(B)m2(C)
where,
K = ∑ B ∩ C = ∅ m 1 ( B ) m 2 ( C ) K = \sum_{B \cap C = \emptyset} m_1(B) m_2(C) K=BC=m1(B)m2(C)
K K K characterizes the a measure of conflict between the different mass sets.

In order to explain the D-S evidence theory, the follow example is provided. For a murder crime, there are three suspects consisting in the frame of discernment {Peter, Paul, Mary}, two witnesses (W1, W2) provide the following BPA to the Police.

m 1 ( ) m_1() m1() m 2 ( ) m_2() m2() m 12 ( ) m_{12}() m12()
{Peter} 0.98 0 0.49
{Paul} 0.01 0.01 0.015
{Mary} 0 0.98 0.49
{Peter, Paul Mary} 0.01 0.01 0.005

A: Calculate the constant K,
K = 1 − ∑ B ∪ C = ∅ m 1 ( B ) ⋅ m 2 ( C ) = 1 − [ m 1 ( P e t e r ) ⋅ m 2 ( P a u l ) + m 1 ( P e t e r ) ⋅ m 2 ( M a r y ) + m 1 ( P a u l ) × m 2 ( P e t e r ) + m 1 ( P a u l ) ⋅ m 2 ( M a r y ) + m 1 ( M a r y ) × m 2 ( P e t e r ) + m 1 ( M a r y ) × m 2 ( P a u l ) ] = 1 − ( 0.98 × 0.01 + 0.98 × 0.98 + 0.01 × 0 + 0.01 × 0.98 + 0 × 0 + 0 ∗ 0.98 ) = 0.02 K = 1-\sum_{B\cup C =\varnothing}{m_1(B)\cdot m_2(C)}\\ =1-[m_1(Peter)\cdot m_2(Paul) + m_1(Peter)\cdot m_2(Mary)+m_1(Paul)\times m_2(Peter) + m_1(Paul)\cdot m_2(Mary)+ m_1(Mary)\times m_2(Peter) + m_1(Mary)\times m_2(Paul)]\\ =1-(0.98\times 0.01 + 0.98\times0.98+0.01\times 0 + 0.01\times 0.98+ 0\times 0+ 0*0.98)\\ =0.02 K=1BC=m1(B)m2(C)=1[m1(Peter)m2(Paul)+m1(Peter)m2(Mary)+m1(Paul)×m2(Peter)+m1(Paul)m2(Mary)+m1(Mary)×m2(Peter)+m1(Mary)×m2(Paul)]=1(0.98×0.01+0.98×0.98+0.01×0+0.01×0.98+0×0+00.98)=0.02
or
K = ∑ B ∩ C ≠ ∅ m 1 ( B ) ⋅ m 2 ( C ) = m 1 ( P e t e r ) ⋅ m 2 ( P e t e r ) + m 1 ( P e t e r ) ⋅ m 2 ( Θ ) + m 1 ( P a u l ) ⋅ m 2 ( P a u l ) + m 1 ( P a u l ) ⋅ m 2 ( Θ ) + m 1 ( M a r y ) ⋅ m 2 ( M a r y ) + m 1 ( M a r y ) ⋅ m 2 ( Θ ) + m 1 ( Θ ) ⋅ m 2 ( P e t e r ) + m 1 ( Θ ) ⋅ m 2 ( P a u l ) + m 1 ( Θ ) ⋅ m 2 ( M a r y ) + m 2 ( Θ ) ⋅ m 2 ( T h e t a ) = 0.98 × 0.01 + 0.98 × 0 + 0.01 × 0.01 + 0.01 × 0.01 + 0 × 0.98 + 0 × 0.01 + 0.01 × 0 + 0.01 × 0.01 + 0.01 × 0.98 + 0.01 × 0.01 = 0.02 K=\sum_{B\cap C\neq \varnothing}m_1(B)\cdot m_2(C)\\ =m_1(Peter)\cdot m_2(Peter)+m_1(Peter)\cdot m_2(\Theta)\\ +m_1(Paul)\cdot m_2(Paul)+m_1(Paul)\cdot m_2(\Theta)\\ +m_1(Mary)\cdot m_2(Mary)+m_1(Mary)\cdot m_2(\Theta)\\ +m_1(\Theta)\cdot m_2(Peter) + m_1(\Theta)\cdot m_2(Paul)+m_1(\Theta)\cdot m_2(Mary)+m_2(\Theta)\cdot m_2(Theta)\\ =0.98\times 0.01+0.98\times 0\\ +0.01\times 0.01+0.01\times 0.01\\ +0\times 0.98+0\times 0.01\\ +0.01\times 0+ 0.01\times 0.01+ 0.01\times 0.98+0.01\times 0.01\\ =0.02 K=BC=m1(B)m2(C)=m1(Peter)m2(Peter)+m1(Peter)m2(Θ)+m1(Paul)m2(Paul)+m1(Paul)m2(Θ)+m1(Mary)m2(Mary)+m1(Mary)m2(Θ)+m1(Θ)m2(Peter)+m1(Θ)m2(Paul)+m1(Θ)m2(Mary)+m2(Θ)m2(Theta)=0.98×0.01+0.98×0+0.01×0.01+0.01×0.01+0×0.98+0×0.01+0.01×0+0.01×0.01+0.01×0.98+0.01×0.01=0.02

(1) calculate the composite mass function about Peter
m 1 ⊕ m 2 ( { P e t e r } ) = 1 K ∑ B ∩ C = { P e t e r } m 1 ( B ) ⋅ m 2 C = 1 K [ m 1 ( { P e t e r } ) ⋅ m 2 ( { P e t e r } ) + m 1 ( { P e t e r } ) ⋅ m 2 ( Θ ) + m 1 ( Θ ) ⋅ m 2 ( { P e t e r } ) ] = 1 0.02 × ( 0.98 × 0 + 0.98 × 0.01 + 0.01 × 0 ) = 0.49 m_1\oplus m_2(\{Peter\}) = \frac{1}{K}\sum_{B\cap C=\{Peter\}}{m_1(B)\cdot m_2{C}}\\ =\frac{1}{K}[m_1(\{Peter\})\cdot m_2(\{Peter\})+m_1(\{Peter\})\cdot m_2(\Theta)+m_1(\Theta)\cdot m_2(\{Peter\})]\\ =\frac{1}{0.02}\times (0.98\times 0+ 0.98\times 0.01+0.01\times 0)=0.49 m1m2({ Peter})=K1BC={ Peter}m1(B)m2C=K1[m1({ Peter})m2({ Peter})+m1({ Peter})m2(Θ)+m1(Θ)m2({ Peter})]=0.021×(0.98×0+0.98×0.01+0.01×0)=0.49

(2) Calculate the composite mass function about Paul
m 1 ⊕ m 2 ( { P a u l } ) = 1 K ∑ B ∩ C = { P a u l } m 1 ( B ) ⋅ m 2 ( C ) = 1 K [ m 1 ( { P a u l } ) ⋅ m 2 ( { P a u l } ) + m 1 ( { P a u l } ) ⋅ m 2 ( Θ ) + m 1 ( T h e t a ) ⋅ m 2 ( { P a u l } ) ] = 1 0.02 × ( 0.01 × 0.01 + 0.01 × 0.01 + 0.01 × 0.01 ) = 0.015 m_1\oplus m_2(\{Paul\})=\frac{1}{K}\sum_{B\cap C=\{Paul\}}m_1(B)\cdot m_2(C)\\ =\frac{1}{K}[m_1(\{Paul\})\cdot m_2(\{Paul\})+m_1(\{Paul\})\cdot m_2(\Theta)+m_1(Theta)\cdot m_2(\{Paul\})]\\ =\frac{1}{0.02}\times (0.01\times 0.01+0.01\times 0.01+0.01\times 0.01)=0.015 m1m2({ Paul})=K1BC={ Paul}m1(B)m2(C)=K1[m1({ Paul})m2({ Paul})+m1({ Paul})m2(Θ)+m1(Theta)m2({ Paul})]=0.021×(0.01×0.01+0.01×0.01+0.01×0.01)=0.015

(3) Calculate the composite mass function about Mary
m 1 ⊕ m 2 ( { M a r y } ) = 1 K ∑ B ∩ C = { M a r y } m 1 ( B ) ⋅ m 2 ( C ) = 1 K [ m 1 ( { M a r y } ) ⋅ m 2 ( { M a r y } ) + m 1 ( { M a r y } ) ⋅ m 2 ( Θ ) + m 1 ( Θ ) ⋅ m 2 ( { M a r y } ) ] = 1 0.02 × ( 0 × 0.98 + 0 × 0.01 + 0.01 × 0.98 ) = 0.49 m_1\oplus m_2(\{Mary\})=\frac{1}{K}\sum_{B\cap C=\{Mary\}}m_1(B)\cdot m_2(C)\\ =\frac{1}{K}[m_1(\{Mary\})\cdot m_2(\{Mary\})+m_1(\{Mary\})\cdot m_2(\Theta)+m_1(\Theta)\cdot m_2(\{Mary\})]\\ =\frac{1}{0.02}\times (0\times 0.98+0\times 0.01+0.01\times 0.98)=0.49 m1m2({ Mary})=K1BC={ Mary}m1(B)m2(C)=K1[m1({ Mary})m2({ Mary})+m1({ Mary})m2(Θ)+m1(Θ)m2({ Mary})]=0.021×(0×0.98+0×0.01+0.01×0.98)=0.49

(4) Calculate the composite mass function about Θ = { P e t e r , P a u l , M a r y } \Theta=\{Peter, Paul, Mary\} Θ={ Peter,Paul,Mary}
m 1 ⊕ m 2 ( Θ ) = 1 K ∑ B ∩ C = Θ m 1 ( B ) ⋅ m 2 ( C ) = 1 K m 1 ( Θ ) × m 2 ( Θ ) = 1 0.02 0.01 × 0.01 = 0.005 m_1\oplus m_2(\Theta)=\frac{1}{K}\sum_{B\cap C=\Theta}m_1(B)\cdot m_2(C)\\ =\frac{1}{K}m_1(\Theta)\times m_2(\Theta)\\ =\frac{1}{0.02}0.01\times 0.01=0.005 m1m2(Θ)=K1BC=Θm1(B)m2(C)=K1m1(Θ)×m2(Θ)=0.0210.01×0.01=0.005
Further, according to the formulas of belief function and flausible function, we obtain:
Bel ( { P e t e r } = 0.49 \text{Bel}(\{Peter\}=0.49 Bel({ Peter}=0.49; Pl ( { P e t e r } ) = 0.49 + 0.005 = 0.495 \text{Pl}(\{Peter\})=0.49+0.005=0.495 Pl({ Peter})=0.49+0.005=0.495
Bel ( { P a u l } = 0.015 \text{Bel}(\{Paul\}=0.015 Bel({ Paul}=0.015; Pl ( { P a u l } ) = 0.015 + 0.005 = 0.020 \text{Pl}(\{Paul\})=0.015+0.005=0.020 Pl({ Paul})=0.015+0.005=0.020
Bel ( { M a r y } = 0.49 \text{Bel}(\{Mary\}=0.49 Bel({ Mary}=0.49; Pl ( { M a r y } ) = 0.49 + 0.005 = 0.495 \text{Pl}(\{Mary\})=0.49+0.005=0.495 Pl({ Mary})=0.49+0.005=0.495
Bel ( Θ ) = Pl ( Θ ) = 0.49 + 0.015 + 0.49 + 0.005 = 1 \text{Bel}(\Theta)=\text{Pl}(\Theta)=0.49+0.015+0.49+0.005=1 Bel(Θ)=Pl(Θ)=0.49+0.015+0.49+0.005=1

猜你喜欢

转载自blog.csdn.net/x5675602/article/details/106205902