素数个数无穷的若干种证明整理

法一

证明
  假设素数的个数是有限的,总共有 n n n个,分别为 p 1 , p 2 , ⋯   , p n { {p}_{1}},{ {p}_{2}},\cdots ,{ {p}_{n}} p1,p2,,pn。考虑 P = p 1 p 2 ⋯ p n + 1 ( > 1 ) P={ {p}_{1}}{ {p}_{2}}\cdots { {p}_{n}}+1\left( >1 \right) P=p1p2pn+1(>1).
根据算数基本定理, P P P能表示成一系列素数的乘积 ⇒ ∃ k ∈ { 1 , 2 , ⋯   , n } ,   s . t .   p k ∣ P \Rightarrow \exists k\in \left\{ 1,2,\cdots ,n \right\},\text{ }s.t.\left. \text{ }{ {p}_{k}} \right|P k{ 1,2,,n}, s.t. pkP
{ p k ∣ P = p 1 p 2 ⋯ p n + 1 p k ∣ p 1 p 2 ⋯ p n   ⇒   p k ∣ 1 \left\{ \begin{aligned} & \left. { {p}_{k}} \right|P={ {p}_{1}}{ {p}_{2}}\cdots { {p}_{n}}+1 \\ & \left. { {p}_{k}} \right|{ {p}_{1}}{ {p}_{2}}\cdots { {p}_{n}} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left. { {p}_{k}} \right|1 { pkP=p1p2pn+1pkp1p2pn  pk1
矛盾。由反证法,得素数的个数是无限的。

法二

引理(柯西收敛定理)
  令 ∑ u n = u 1 + u 2 + ⋯ + u n + ⋯ = A ,   ∑ v n = v 1 + v 2 + ⋯ + v n + ⋯ = B \sum\limits_{ {}}^{ {}}{ { {u}_{n}}}={ {u}_{1}}+{ {u}_{2}}+\cdots +{ {u}_{n}}+\cdots =A,\text{ }\sum\limits_{ {}}^{ {}}{ { {v}_{n}}}={ {v}_{1}}+{ {v}_{2}}+\cdots +{ {v}_{n}}+\cdots =B un=u1+u2++un+=A, vn=v1+v2++vn+=B,若级数 A , B A,B A,B都绝对收敛,则 A × B A\times B A×B结果中所有乘积项 u i v j { {u}_{i}}{ {v}_{j}} uivj按任意顺序排列后所得到的级数 ∑ w n = ∑ u i v j \sum\limits_{ {}}^{ {}}{ { {w}_{n}}=\sum\limits_{ {}}^{ {}}{ { {u}_{i}}{ {v}_{j}}}} wn=uivj也绝对收敛且其和等于 A B AB AB

定理证明
  假设素数的个数是有限的,总共有 n n n个,分别为 p 1 , p 2 , ⋯   , p n { {p}_{1}},{ {p}_{2}},\cdots ,{ {p}_{n}} p1,p2,,pn
∏ k = 1 n 1 1 − 1 p k = ∏ k = 1 n ( 1 + 1 p k + 1 p k 2 + ⋯   ) = ∏ k = 1 n ∑ i = 0 ∞ 1 p k i \prod\limits_{k=1}^{n}{\frac{1}{1-\frac{1}{ { {p}_{k}}}}}=\prod\limits_{k=1}^{n}{\left( 1+\frac{1}{ { {p}_{k}}}+\frac{1}{ { {p}_{k}}^{2}}+\cdots \right)}=\prod\limits_{k=1}^{n}{\sum\limits_{i=0}^{\infty }{\frac{1}{ { {p}_{k}}^{i}}}} k=1n1pk11=k=1n(1+pk1+pk21+)=k=1ni=0pki1
由引理,有
∏ k = 1 n ∑ i = 0 ∞ 1 p k i = ∑ ∀ j ,   e j ∈ Z ≥ 0 1 p 1 e 1 p 2 e 2 ⋯ p n e n \prod\limits_{k=1}^{n}{\sum\limits_{i=0}^{\infty }{\frac{1}{ { {p}_{k}}^{i}}}}=\sum\limits_{\forall j,\text{ }{ {e}_{j}}\in { {\mathbb{Z}}_{\ge 0}}}^{ {}}{\frac{1}{ { {p}_{1}}^{ { {e}_{1}}}{ {p}_{2}}^{ { {e}_{2}}}\cdots { {p}_{n}}^{ { {e}_{n}}}}} k=1ni=0pki1=j, ejZ0p1e1p2e2pnen1
∑ ∀ j ,   e j ∈ Z ≥ 0 1 p 1 e 1 p 2 e 2 ⋯ p n e n \sum\limits_{\forall j,\text{ }{ {e}_{j}}\in { {\mathbb{Z}}_{\ge 0}}}^{ {}}{\frac{1}{ { {p}_{1}}^{ { {e}_{1}}}{ {p}_{2}}^{ { {e}_{2}}}\cdots { {p}_{n}}^{ { {e}_{n}}}}} j, ejZ0p1e1p2e2pnen1绝对收敛。

  令 S = { p 1 e 1 p 2 e 2 ⋯ p n e n   ∣   e 1 , e 2 , ⋯   , e n ∈ Z ≥ 0 } S=\left\{ { {p}_{1}}^{ { {e}_{1}}}{ {p}_{2}}^{ { {e}_{2}}}\cdots { {p}_{n}}^{ { {e}_{n}}}\left. \text{ } \right|\text{ }{ {e}_{1}},{ {e}_{2}},\cdots ,{ {e}_{n}}\in { {\mathbb{Z}}_{\ge 0}} \right\} S={ p1e1p2e2pnen  e1,e2,,enZ0},考虑 S S S Z ≥ 1 { {\mathbb{Z}}_{\ge 1}} Z1的关系。

  一方面, ∀ p = p 1 e 1 p 2 e 2 ⋯ p n e n \forall p={ {p}_{1}}^{ { {e}_{1}}}{ {p}_{2}}^{ { {e}_{2}}}\cdots { {p}_{n}}^{ { {e}_{n}}} p=p1e1p2e2pnen
{ e 1 , e 2 , ⋯   , e n ∈ Z ≥ 0 p 1 , p 2 , ⋯   , p n ∈ Z ≥ 1   ⇒   p ∈ Z ≥ 1   ⇒   S ⊆ Z ≥ 1 \left\{ \begin{aligned} & { {e}_{1}},{ {e}_{2}},\cdots ,{ {e}_{n}}\in { {\mathbb{Z}}_{\ge 0}} \\ & { {p}_{1}},{ {p}_{2}},\cdots ,{ {p}_{n}}\in { {\mathbb{Z}}_{\ge 1}} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }p\in { {\mathbb{Z}}_{\ge 1}}\text{ }\Rightarrow \text{ }S\subseteq { {\mathbb{Z}}_{\ge 1}} { e1,e2,,enZ0p1,p2,,pnZ1  pZ1  SZ1

  另一方面,由算数基本定理, ∀ t ∈ Z ≥ 1 \forall t\in { {\mathbb{Z}}_{\ge 1}} tZ1 t t t可以表示成一系列素数的乘积,即 ∃ p i 1 , p i 2 , ⋯   , p i n   &   e i 1 ,   e i 2 , ⋯   , e i n ∈ Z ≥ 0 ,   s . t .   t = ∏ k = 1 n p i k e i k   ⇒   t ∈ S ,   Z ≥ 1 ⊆ S \exists { {p}_{ { {i}_{1}}}},{ {p}_{ { {i}_{2}}}},\cdots ,{ {p}_{ { {i}_{n}}}}\text{ }\And \text{ }{ {e}_{ { {i}_{1}}}},\text{ }{ {e}_{ { {i}_{2}}}},\cdots ,{ {e}_{ { {i}_{n}}}}\in { {\mathbb{Z}}_{\ge 0}},\text{ }s.t.\text{ }t=\prod\limits_{k=1}^{n}{ { {p}_{ { {i}_{k}}}}{ {e}^{ { {i}_{k}}}}}\text{ }\Rightarrow \text{ }t\in S,\text{ }{ {\mathbb{Z}}_{\ge 1}}\subseteq S pi1,pi2,,pin & ei1, ei2,,einZ0, s.t. t=k=1npikeik  tS, Z1S

  综上有 S = Z ≥ 1 S={ {\mathbb{Z}}_{\ge 1}} S=Z1,因此有
∑ ∀ j ,   e j ∈ Z ≥ 0 1 p 1 e 1 p 2 e 2 ⋯ p n e n = 1 + 1 2 + 1 3 + ⋯ = ∑ k = 1 ∞ 1 k \sum\limits_{\forall j,\text{ }{ {e}_{j}}\in { {\mathbb{Z}}_{\ge 0}}}^{ {}}{\frac{1}{ { {p}_{1}}^{ { {e}_{1}}}{ {p}_{2}}^{ { {e}_{2}}}\cdots { {p}_{n}}^{ { {e}_{n}}}}}=1+\frac{1}{2}+\frac{1}{3}+\cdots =\sum\limits_{k=1}^{\infty }{\frac{1}{k}} j, ejZ0p1e1p2e2pnen1=1+21+31+=k=1k1
∑ k = 1 ∞ 1 k \sum\limits_{k=1}^{\infty }{\frac{1}{k}} k=1k1是一个发散级数,矛盾。由反证法得素数的个数是有限的。

法三

引理
∏ k = 0 n − 1 F k = F n − 2 \prod\limits_{k=0}^{n-1}{ { {F}_{k}}}={ {F}_{n}}-2 k=0n1Fk=Fn2
其中 F k { {F}_{k}} Fk是费马数的记号,表达式为 F k = 2 2 k + 1 ,   k = 0 , 1 , ⋯ { {F}_{k}}={ {2}^{ { {2}^{k}}}}+1,\text{ }k=0,1,\cdots Fk=22k+1, k=0,1,

引理证明
  当 n = 1 n=1 n=1时, ∏ k = 0 1 − 1 F k = F 0 = 2 2 0 + 1 = 3 = ( 2 2 1 + 1 ) − 2 = F 1 − 2 \prod\limits_{k=0}^{1-1}{ { {F}_{k}}}={ {F}_{0}}={ {2}^{ { {2}^{0}}}}+1=3=\left( { {2}^{ { {2}^{1}}}}+1 \right)-2={ {F}_{1}}-2 k=011Fk=F0=220+1=3=(221+1)2=F12
  设成立 ∏ k = 0 t F k = F t + 1 − 2 \prod\limits_{k=0}^{t}{ { {F}_{k}}}={ {F}_{t+1}}-2 k=0tFk=Ft+12,考虑 ∏ k = 0 t + 1 F k \prod\limits_{k=0}^{t+1}{ { {F}_{k}}} k=0t+1Fk如下。
∏ k = 0 t + 1 F k = ( ∏ k = 0 t F k ) ⋅ F t + 1 = ( F t + 1 − 2 ) F t + 1 = ( 2 2 t + 1 + 1 − 2 ) ( 2 2 t + 1 + 1 ) = 2 2 t + 2 − 1 = F t + 2 \begin{aligned} & \prod\limits_{k=0}^{t+1}{ { {F}_{k}}}=\left( \prod\limits_{k=0}^{t}{ { {F}_{k}}} \right)\centerdot { {F}_{t+1}} \\ & =\left( { {F}_{t+1}}-2 \right){ {F}_{t+1}} \\ & =\left( { {2}^{ { {2}^{t+1}}}}+1-2 \right)\left( { {2}^{ { {2}^{t+1}}}}+1 \right) \\ & ={ {2}^{ { {2}^{t+2}}}}-1 \\ & ={ {F}_{t+2}} \\ \end{aligned} k=0t+1Fk=(k=0tFk)Ft+1=(Ft+12)Ft+1=(22t+1+12)(22t+1+1)=22t+21=Ft+2
由数学第一归纳法可证得结论成立。

扫描二维码关注公众号,回复: 12221072 查看本文章

定理证明
  由引理,对于一个固定的 n n n,有以下式子成立
∏ k = 0 n − 1 F k = F n − 2 \prod\limits_{k=0}^{n-1}{ { {F}_{k}}}={ {F}_{n}}-2 k=0n1Fk=Fn2
∀ t ∈ { 1 , 2 , ⋯   , n − 1 } \forall t\in \left\{ 1,2,\cdots ,n-1 \right\} t{ 1,2,,n1} F t   &   F n { {F}_{t}}\text{ }\And \text{ }{ {F}_{n}} Ft & Fn成立以下关系
( ∏ k = 0 k ≠ t n − 1 F k ) ⋅ F t = F n − 2 ⇒ 2 = F n − ( ∏ k = 0 k ≠ t n − 1 F k ) ⋅ F t ⇒ gcd ⁡ ( F t , F n )   ∣   2 ⇒ gcd ⁡ ( F t , F n ) = 1   o r   2 \begin{matrix} \left( \prod\limits_{\begin{matrix} k=0 \\ k\ne t \end{matrix}}^{n-1}{ { {F}_{k}}} \right)\centerdot { {F}_{t}}={ {F}_{n}}-2 \\ \Rightarrow 2={ {F}_{n}}-\left( \prod\limits_{\begin{matrix} k=0 \\ k\ne t \end{matrix}}^{n-1}{ { {F}_{k}}} \right)\centerdot { {F}_{t}} \\ \Rightarrow \left. \gcd \left( { {F}_{t}},{ {F}_{n}} \right)\text{ } \right|\text{ }2 \\ \Rightarrow \gcd \left( { {F}_{t}},{ {F}_{n}} \right)=1\text{ }or\text{ }2 \\ \end{matrix} k=0k=tn1FkFt=Fn22=Fnk=0k=tn1FkFtgcd(Ft,Fn)  2gcd(Ft,Fn)=1 or 2
∀ i ,   F i = 2 2 i − 1 \forall i,\text{ }{ {F}_{i}}={ {2}^{ { {2}^{i}}}}-1 i, Fi=22i1是奇数, 2 ∤ F i 2\not{|}{ {F}_{i}} 2Fi,因此 gcd ⁡ ( F t , F n ) ≠ 2 \gcd \left( { {F}_{t}},{ {F}_{n}} \right)\ne 2 gcd(Ft,Fn)=2,因此 gcd ⁡ ( F t , F n ) = 1 \gcd \left( { {F}_{t}},{ {F}_{n}} \right)=1 gcd(Ft,Fn)=1
于是我们得出结论:对于任意两个不同的费马数 F m , F n ( m ≠ n ) { {F}_{m}},{ {F}_{n}}\left( m\ne n \right) Fm,Fn(m=n) F m , F n { {F}_{m}},{ {F}_{n}} Fm,Fn互素,即 gcd ⁡ ( F m , F n ) = 1 \gcd \left( { {F}_{m}},{ {F}_{n}} \right)=1 gcd(Fm,Fn)=1
∀ F m = 2 2 m + 1 \forall { {F}_{m}}={ {2}^{ { {2}^{m}}}}+1 Fm=22m+1,记 S m = { p   ∣   p   i s   p r i m e   &   p ∣ F m } { {S}_{m}}=\left\{ \left. p\text{ } \right|\text{ }p\text{ }is\text{ }prime\text{ }\And \text{ }\left. p \right|{ {F}_{m}} \right\} Sm={ p  p is prime & pFm},则有 # S m ≥ 1 \#{ {S}_{m}}\ge 1 #Sm1;且由上面所述有 ∀ m ≠ n ,   S m ⋂ S n = ∅   ⇒    ⁣ ⁣ #  ⁣ ⁣   ( S m ⋃ S n ) = # S m + # S n \forall m\ne n,\text{ }{ {\text{S}}_{m}}\bigcap { {S}_{n}}=\varnothing \text{ }\Rightarrow \text{ }\!\!\#\!\!\text{ }\left( { {S}_{m}}\bigcup { {S}_{n}} \right)=\#{ {S}_{m}}+\#{ {S}_{n}} m=n, SmSn=  # (SmSn)=#Sm+#Sn。记全体素数集合为 P P P。有
# P ≥ # ( ⋃ i = 0 ∞ S i ) = ∑ i = 0 ∞ # S i ≥ ∑ i = 0 ∞ 1 → ∞ \#P\ge \#\left( \bigcup\limits_{i=0}^{\infty }{ { {S}_{i}}} \right)=\sum\limits_{i=0}^{\infty }{\#{ {S}_{i}}}\ge \sum\limits_{i=0}^{\infty }{1}\to \infty #P#(i=0Si)=i=0#Sii=01
这与素数个数是有限的假设矛盾。由反证法可得素数的个数是无限的。

法四

定理证明
  假设素数的个数是有限的,因此存在一个最大的素数并设为 p p p

  1. 考虑Mersenne数 M p = 2 p − 1 { {M}_{p}}={ {2}^{p}}-1 Mp=2p1,由算数基本定理, M p { {M}_{p}} Mp可以表示成一系列素数的乘积。设其中的任一个素因子为 q q q,即有
    q ∣ 2 p − 1   ( 1 ) \left. q \right|{ {2}^{p}}-1\text{ }\left( 1 \right) q2p1 (1)

  2. 由费马小定理有 q ∣ 2 q − 2 = 2 ( 2 q − 1 − 1 ) \left. q \right|{ {2}^{q}}-2=2\left( { {2}^{q-1}}-1 \right) q2q2=2(2q11)
    2 p { {2}^{p}} 2p一定是偶数, M p = 2 p − 1 { {M}_{p}}={ {2}^{p}}-1 Mp=2p1一定是奇数,所以 2 2 2肯定不是 M p { {M}_{p}} Mp的素因子,因此 q q q一定是奇数,即 q ∤ 2 q\not{|}2 q2。因此有
    q ∣ 2 q − 1 − 1   ( 2 ) \left. q \right|{ {2}^{q-1}}-1\text{ }\left( 2 \right) q2q11 (2)

  3. 由于 p p p是素数, gcd ⁡ ( p , q − 1 ) = 1 \gcd \left( p,q-1 \right)=1 gcd(p,q1)=1异或 p ∣ q − 1 \left. p \right|q-1 pq1

    1. gcd ⁡ ( p , q − 1 ) = 1 \gcd \left( p,q-1 \right)=1 gcd(p,q1)=1,则 ∃ s , t ∈ Z ,   s . t . p s + ( q − 1 ) t = 1 \exists s,t\in \mathbb{Z},\text{ }s.t.ps+\left( q-1 \right)t=1 s,tZ, s.t.ps+(q1)t=1。考虑以下式子
      1 = 2 1 − 1 = 2 p s + ( q − 1 ) t − 1 = ( 2 p ) s ⋅ ( 2 q − 1 ) t − 1 = ( 2 p − 1 + 1 ) s ⋅ ( 2 q − 1 − 1 + 1 ) t − 1 = ( 1 + ∑ k = 1 s ( 2 p − 1 ) k ) ( 1 + ∑ k = 1 t ( 2 q − 1 − 1 ) k ) − 1 = ∑ k = 1 s ( 2 p − 1 ) k + ∑ k = 1 t ( 2 q − 1 − 1 ) k + ∑ k = 1 s ( 2 p − 1 ) k ∑ k = 1 t ( 2 q − 1 − 1 ) k   ( 3 ) \begin{aligned} & 1={ {2}^{1}}-1 \\ & ={ {2}^{ps+\left( q-1 \right)t}}-1 \\ & ={ {\left( { {2}^{p}} \right)}^{s}}\centerdot { {\left( { {2}^{q-1}} \right)}^{t}}-1 \\ & ={ {\left( { {2}^{p}}-1+1 \right)}^{s}}\centerdot { {\left( { {2}^{q-1}}-1+1 \right)}^{t}}-1 \\ & =\left( 1+\sum\limits_{k=1}^{s}{ { {\left( { {2}^{p}}-1 \right)}^{k}}} \right)\left( 1+\sum\limits_{k=1}^{t}{ { {\left( { {2}^{q-1}}-1 \right)}^{k}}} \right)-1 \\ & =\sum\limits_{k=1}^{s}{ { {\left( { {2}^{p}}-1 \right)}^{k}}}+\sum\limits_{k=1}^{t}{ { {\left( { {2}^{q-1}}-1 \right)}^{k}}}+\sum\limits_{k=1}^{s}{ { {\left( { {2}^{p}}-1 \right)}^{k}}}\sum\limits_{k=1}^{t}{ { {\left( { {2}^{q-1}}-1 \right)}^{k}}}\text{ }\left( 3 \right) \\ \end{aligned} 1=211=2ps+(q1)t1=(2p)s(2q1)t1=(2p1+1)s(2q11+1)t1=(1+k=1s(2p1)k)(1+k=1t(2q11)k)1=k=1s(2p1)k+k=1t(2q11)k+k=1s(2p1)kk=1t(2q11)k (3)
      ( 1 ) & ( 2 ) & ( 3 )   ⇒   q ∣ 1 \left( 1 \right)\And \left( 2 \right)\And \left( 3 \right)\text{ }\Rightarrow \text{ }\left. q \right|1 (1)&(2)&(3)  q1,矛盾。
    2. p ∣ q − 1 \left. p \right|q-1 pq1,则有 p ≤ q − 1 < q p\le q-1<q pq1<q,而 q q q是素数,因此 p p p不是最大的素数,矛盾。
  4. 综上,由反证法证得结论。

法五:证明其充分条件 – 存在无穷多个素数 p p p,满足 p ≡ 1     m o d   4 p\equiv 1\text{ }\bmod 4 p1 mod4

证明
  定义集合 A A A
A = { a : a 是 素 数 ,   a ≡ 1     m o d   4 } A=\left\{ a:a是素数,\text{ }a\equiv 1\text{ }\bmod 4 \right\} A={ a:a, a1 mod4}
注意到 A ≠ ∅ A\ne \varnothing A=(因为 5 , 17 ∈ A 5,17\in A 5,17A),因此有 ∣ A ∣ > 0 \left| A \right|>0 A>0

  假设 ∣ A ∣ < ∞ \left| A \right|<\infty A<,考虑 m = ( 2 ∏ p ∈ A p ) 2 + 1 m={ {\left( 2\prod\limits_{p\in A}^{ {}}{p} \right)}^{2}}+1 m=(2pAp)2+1,显然有 m > 1 m>1 m>1。由算术基本定理, m m m可以分解为一系列素数的乘积。又由 m m m的构造方式, m m m是奇数,因此 m m m的素因子不只有2,因此 m m m一定有奇素数因子 p ′ ( p ′ ≥ 3 ) p'\left( p'\ge 3 \right) p(p3),即有 m ≡ 0     m o d   p ′ m\equiv 0\text{ }\bmod p' m0 modp − 1 ≡ m − 1     m o d   p ′ -1\equiv m-1\text{ }\bmod p' 1m1 modp
( − 1 p ′ ) = ( m − 1 p ′ ) = ( ( 2 ∏ p ∈ A p ) 2 p ′ ) = ( 2 ∏ p ∈ A p p ′ ) 2 ( − 1 p ′ ) = ± 1 } ⇒ ( − 1 p ′ ) = 1 \left. \begin{matrix} \left( \frac{-1}{p'} \right)=\left( \frac{m-1}{p'} \right)=\left( \frac{ { {\left( 2\prod\limits_{p\in A}^{ {}}{p} \right)}^{2}}}{p'} \right)={ {\left( \frac{2\prod\limits_{p\in A}^{ {}}{p}}{p'} \right)}^{2}} \\ \left( \frac{-1}{p'} \right)=\pm 1 \\ \end{matrix} \right\}\Rightarrow \left( \frac{-1}{p'} \right)=1 (p1)=(pm1)=p(2pAp)2=(p2pAp)2(p1)=±1(p1)=1
因此 p ′ ≡ 1     m o d   4 p'\equiv 1\text{ }\bmod 4 p1 mod4,即有 p ′ ∈ A p'\in A pA,也就有 p ′ ∣ 2 ∏ p ∈ A p \left. p' \right|2\prod\limits_{p\in A}^{ {}}{p} p2pAp
p ′ ∣ 2 ∏ p ∈ A p   ⇒   p ′ ∣ ( 2 ∏ p ∈ A p ) 2 p ′ ∣ m }   ⇒   p ′ ∣ ( m − ( 2 ∏ p ∈ A p ) 2 ) = 1 \left. \begin{matrix} \left. p' \right|2\prod\limits_{p\in A}^{ {}}{p}\text{ }\Rightarrow \text{ }\left. p' \right|{ {\left( 2\prod\limits_{p\in A}^{ {}}{p} \right)}^{2}} \\ \left. p' \right|m \\ \end{matrix} \right\}\text{ }\Rightarrow \text{ }\left. p' \right|\left( m-{ {\left( 2\prod\limits_{p\in A}^{ {}}{p} \right)}^{2}} \right)=1 p2pAp  p(2pAp)2pm  pm2pAp2=1
矛盾。因此 ∣ A ∣ = ∞ \left| A \right|=\infty A=,即存在无穷多个素数 p p p,满足 p ≡ 1     m o d   4 p\equiv 1\text{ }\bmod 4 p1 mod4

猜你喜欢

转载自blog.csdn.net/qq_44261017/article/details/109702406