数论之模m的n次剩余与非剩余 理论基础

索引

传送门

本文相应的练习和例题可以参见博文《数论之模m的n次剩余与非剩余 若干练习》.

定义1 设 m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0有原根, a ∈ Z a\in \mathbb{Z} aZ, gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1, n ∈ Z > 0 n\in { {\mathbb{Z}}_{>0}} nZ>0. 若 x n ≡ a     m o d   m { {x}^{n}}\equiv a\text{ }\bmod m xna modm有解, 则称 a a a为模 m m m n n n次剩余; 若 x n ≡ a     m o d   m { {x}^{n}}\equiv a\text{ }\bmod m xna modm无解, 则称 a a a为模 m m m n n n次非剩余.

 该定义中要求 m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0有原根, 由博文《原根的存在性 相关定理(二)》中的定理13, n n n次剩余与非剩余的概念的讨论前提要求 m = 2 ,   4 ,   p k , 2 p k m=2,\text{ }4,\text{ }{ {p}^{k}},2{ {p}^{k}} m=2, 4, pk,2pk, 其中 p p p是奇素数.

定理2  设 m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0有原根 r r r, a ∈ Z a\in \mathbb{Z} aZ, gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1, 则成立等价关系 a 是 模 m 的 n 次 剩 余 .   ⇔   gcd ⁡ ( n , φ ( m ) ) ∣ in d r ( a ) .  ⇔   a φ ( m ) gcd ⁡ ( n , φ ( m ) ) ≡ 1     m o d   m . a是模m的n次剩余.\text{ }\Leftrightarrow \text{ }\left. \gcd \left( n,\varphi \left( m \right) \right) \right|\text{in}{ {\text{d}}_{r}}\left( a \right)\text{. }\Leftrightarrow \text{ }{ {a}^{\frac{\varphi \left( m \right)}{\gcd \left( n,\varphi \left( m \right) \right)}}}\equiv 1\text{ }\bmod m. amn.  gcd(n,φ(m))indr(a) agcd(n,φ(m))φ(m)1 modm.

证明

  1. 先证明 a a a是模 m m m n n n次剩余等价于
    { n y ≡ in d r ( a )     m o d   φ ( m ) y = in d r ( x ) (2.1) \left\{ \begin{aligned} & ny\equiv \text{in}{ {\text{d}}_{r}}\left( a \right)\text{ }\bmod \varphi \left( m \right) \\ & y=\text{in}{ {\text{d}}_{r}}\left( x \right) \\ \end{aligned} \right. \tag{2.1} { nyindr(a) modφ(m)y=indr(x)(2.1)
    有解.
    ( ⇒ ) \left( \Rightarrow \right) () a a a是模 m m m n n n次剩余, 则 ∃ x 0 ∈ Z \exists { {x}_{0}}\in \mathbb{Z} x0Z, 成立
    x 0 n ≡ a     m o d   m . (2.2) { {x}_{0}}^{n}\equiv a\text{ }\bmod m. \tag{2.2} x0na modm.(2.2)
    由于 gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1, 结合式(2.2), 成立 gcd ⁡ ( x 0 n , m ) = 1 \gcd \left( { {x}_{0}}^{n},m \right)=1 gcd(x0n,m)=1, 因此由博文《数论之指标(离散对数) 理论基础》中的定义4, in d r ( a ) ,  in d r ( x 0 n ) \text{in}{ {\text{d}}_{r}}\left( a \right),\text{ in}{ {\text{d}}_{r}}\left( { {x}_{0}}^{n} \right) indr(a), indr(x0n)存在, 基于此可将 x 0 n ,   a { {x}_{0}}^{n},\text{ }a x0n, a视为 r r r的幂, 并由博文《数论之指数和原根》中的定理5(2), 成立
    n in d r ( x 0 ) ≡ in d r ( x 0 n ) ≡ in d r ( a )     m o d   φ ( m ) , n\text{in}{ {\text{d}}_{r}}\left( { {x}_{0}} \right)\equiv \text{in}{ {\text{d}}_{r}}\left( { {x}_{0}}^{n} \right)\equiv \text{in}{ {\text{d}}_{r}}\left( a \right)\text{ }\bmod \varphi \left( m \right), nindr(x0)indr(x0n)indr(a) modφ(m),
    其中 φ ( m ) \varphi \left( m \right) φ(m)是原根 r r r对模 m m m的指数, 此时式(2.1)有解
    { x ≡ x 0     m o d   m y ≡ in d r ( x 0 )     m o d   φ ( m ) \left\{ \begin{aligned} & x\equiv { {x}_{0}}\text{ }\bmod m \\ & y\equiv \text{in}{ {\text{d}}_{r}}\left( { {x}_{0}} \right)\text{ }\bmod \varphi \left( m \right) \\ \end{aligned} \right. { xx0 modmyindr(x0) modφ(m)
    ( ⇐ ) \left( \Leftarrow \right) ()若式(2.1)有解, 设其一个解为 { x = x 0 y = in d r ( x 0 ) \left\{ \begin{aligned} & x={ {x}_{0}} \\ & y=\text{in}{ {\text{d}}_{r}}\left( { {x}_{0}} \right) \\ \end{aligned} \right. { x=x0y=indr(x0), 成立
    in d r ( x 0 n ) ≡ n in d r ( x 0 ) = in d r ( a )     m o d   φ ( m ) , \text{in}{ {\text{d}}_{r}}\left( { {x}_{0}}^{n} \right)\equiv n\text{in}{ {\text{d}}_{r}}\left( { {x}_{0}} \right)=\text{in}{ {\text{d}}_{r}}\left( a \right)\text{ }\bmod \varphi \left( m \right), indr(x0n)nindr(x0)=indr(a) modφ(m),
    其中 φ ( m ) \varphi \left( m \right) φ(m)是原根 r r r对模 m m m的指数, 由博文《数论之指数和原根》中的定理5(2), 成立
    r in d r ( x 0 n ) ≡ r in d r ( a )     m o d   m , { {r}^{\text{in}{ {\text{d}}_{r}}\left( { {x}_{0}}^{n} \right)}}\equiv { {r}^{\text{in}{ {\text{d}}_{r}}\left( a \right)}}\text{ }\bmod m, rindr(x0n)rindr(a) modm,
    x n ≡ a     m o d   m { {x}^{n}}\equiv a\text{ }\bmod m xna modm有解 x = x 0 x={ {x}_{0}} x=x0, a a a是模 m m m n n n次剩余.

  2. 其次证明式(2.1)
    { n y ≡ in d r ( a )     m o d   φ ( m ) ①  y = in d r ( x ) ②  (2.1) \left\{ \begin{aligned} & ny\equiv \text{in}{ {\text{d}}_{r}}\left( a \right)\text{ }\bmod \varphi \left( m \right)\text{① } \\ & y=\text{in}{ {\text{d}}_{r}}\left( x \right)\text{② } \\ \end{aligned} \right. \tag{2.1} { nyindr(a) modφ(m)① y=indr(x)② (2.1)
    有解等价于 gcd ⁡ ( n , φ ( m ) ) ∣ in d r ( a ) \left. \gcd \left( n,\varphi \left( m \right) \right) \right|\text{in}{ {\text{d}}_{r}}\left( a \right) gcd(n,φ(m))indr(a).
    博文《初等数论 课堂笔记 第二章 – 不定方程》中的定理2.1, 式①有解等价于
    gcd ⁡ ( n , φ ( m ) ) ∣ in d r ( a ) . \left. \gcd \left( n,\varphi \left( m \right) \right) \right|\text{in}{ {\text{d}}_{r}}\left( a \right). gcd(n,φ(m))indr(a).
    在式①有解的前提下, 设式①的一个解为 y = y 0 y={ {y}_{0}} y=y0, 并令②中的 y = y 0 y={ {y}_{0}} y=y0. 由 r r r是模 m m m原根和博文《数论之指标(离散对数) 理论基础》中的定理1, 成立 gcd ⁡ ( r y 0 , m ) = 1 \gcd \left( { {r}^{ { {y}_{0}}}},m \right)=1 gcd(ry0,m)=1, 再由博文《数论之指标(离散对数) 理论基础》中的定义4, 方程 r y ≡ r y 0     m o d   m { {r}^{y}}\equiv { {r}^{ { {y}_{0}}}}\text{ }\bmod m ryry0 modm有唯一解
    y ≡ in d r ( r y 0 ) = y 0  mod φ ( m ) . y\equiv \text{in}{ {\text{d}}_{r}}\left( { {r}^{ { {y}_{0}}}} \right)={ {y}_{0}}\text{ mod}\varphi \left( m \right). yindr(ry0)=y0 modφ(m).
    即在①有解的情况下, ②也一定有解 { x ≡ r y 0     m o d   m y = y 0     m o d   φ ( m ) . \left\{ \begin{aligned} & x\equiv { {r}^{ { {y}_{0}}}}\text{ }\bmod m \\ & y={ {y}_{0}}\text{ }\bmod \varphi \left( m \right) \\ \end{aligned} \right.. { xry0 modmy=y0 modφ(m).
    因此式(2.1)有解 等价于 式①有解 等价于 gcd ⁡ ( n , φ ( m ) ) ∣ in d r ( a ) \left. \gcd \left( n,\varphi \left( m \right) \right) \right|\text{in}{ {\text{d}}_{r}}\left( a \right) gcd(n,φ(m))indr(a).

  3. 最后证明成立等价关系
    gcd ⁡ ( n , φ ( m ) ) ∣ in d r ( a ) .   ⇔   a φ ( m ) gcd ⁡ ( n , φ ( m ) ) ≡ 1     m o d   m . \left. \gcd \left( n,\varphi \left( m \right) \right) \right|\text{in}{ {\text{d}}_{r}}\left( a \right).\text{ }\Leftrightarrow \text{ }{ {a}^{\frac{\varphi \left( m \right)}{\gcd \left( n,\varphi \left( m \right) \right)}}}\equiv 1\text{ }\bmod m. gcd(n,φ(m))indr(a).  agcd(n,φ(m))φ(m)1 modm.
    事实上, 显然成立
    gcd ⁡ ( n , φ ( m ) ) ∣ in d r ( a ) .  ⇔ φ ( m ) ∣ φ ( m ) in d r ( a ) gcd ⁡ ( n , φ ( m ) ) . ⇔ a φ ( m ) gcd ⁡ ( n , φ ( m ) ) = ( r in d r ( a ) ) φ ( m ) gcd ⁡ ( n , φ ( m ) ) = r φ ( m ) in d r ( a ) gcd ⁡ ( n , φ ( m ) ) = r k φ ( m ) = ( r φ ( m ) ) k ≡ 1     m o d   m ,   ∃ k ∈ Z > 0 . \begin{aligned} & \left. \gcd \left( n,\varphi \left( m \right) \right) \right|\text{in}{ {\text{d}}_{r}}\left( a \right)\text{. } \\ & \Leftrightarrow \left. \varphi \left( m \right) \right|\frac{\varphi \left( m \right)\text{in}{ {\text{d}}_{r}}\left( a \right)}{\gcd \left( n,\varphi \left( m \right) \right)}. \\ & \Leftrightarrow { {a}^{\frac{\varphi \left( m \right)}{\gcd \left( n,\varphi \left( m \right) \right)}}}={ {\left( { {r}^{\text{in}{ {\text{d}}_{r}}\left( a \right)}} \right)}^{\frac{\varphi \left( m \right)}{\gcd \left( n,\varphi \left( m \right) \right)}}}={ {r}^{\frac{\varphi \left( m \right)\text{in}{ {\text{d}}_{r}}\left( a \right)}{\gcd \left( n,\varphi \left( m \right) \right)}}} \\ & ={ {r}^{k\varphi \left( m \right)}}={ {\left( { {r}^{\varphi \left( m \right)}} \right)}^{k}}\equiv 1\text{ }\bmod m,\text{ }\exists k\in { {\mathbb{Z}}_{>0}}. \\ \end{aligned} gcd(n,φ(m))indr(a)φ(m)gcd(n,φ(m))φ(m)indr(a).agcd(n,φ(m))φ(m)=(rindr(a))gcd(n,φ(m))φ(m)=rgcd(n,φ(m))φ(m)indr(a)=rkφ(m)=(rφ(m))k1 modm, kZ>0.

推论3 设 m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0, 在模 m m m的一个既约剩余系中, 有 φ ( m ) gcd ⁡ ( n , φ ( m ) ) \frac{\varphi \left( m \right)}{\gcd \left( n,\varphi \left( m \right) \right)} gcd(n,φ(m))φ(m) n n n次剩余 (针对 n n n次剩余的个数).

证明 由定理2, a a a是模 m m m n n n次剩余 ⇔ gcd ⁡ ( n , φ ( m ) ) ∣ in d r ( a ) \Leftrightarrow \left. \gcd \left( n,\varphi \left( m \right) \right) \right|\text{in}{ {\text{d}}_{r}}\left( a \right) gcd(n,φ(m))indr(a), 而由博文《数论之指标(离散对数) 理论基础》中的定理1和定义4, in d r ( a ) \text{in}{ {\text{d}}_{r}}\left( a \right) indr(a)在模去 φ ( m ) \varphi \left( m \right) φ(m)的意I义下刚好有 φ ( m ) \varphi \left( m \right) φ(m)个, 可取遍 { 0 , 1 , ⋯   , φ ( m ) − 1 } \left\{ 0,1,\cdots ,\varphi \left( m \right)-1 \right\} { 0,1,,φ(m)1}. 因此模 m m m n n n次剩余的个数等于 { 0 , 1 , ⋯   , φ ( m ) − 1 } \left\{ 0,1,\cdots ,\varphi \left( m \right)-1 \right\} { 0,1,,φ(m)1} gcd ⁡ ( n , φ ( m ) ) \gcd \left( n,\varphi \left( m \right) \right) gcd(n,φ(m))的倍数的个数 g g g. 又因为 0 0 0就是 gcd ⁡ ( n , φ ( m ) ) \gcd \left( n,\varphi \left( m \right) \right) gcd(n,φ(m))的倍数, 因此显然有
g = [ φ ( m ) gcd ⁡ ( n , φ ( m ) ) ] = φ ( m ) gcd ⁡ ( n , φ ( m ) ) . g=\left[ \frac{\varphi \left( m \right)}{\gcd \left( n,\varphi \left( m \right) \right)} \right]=\frac{\varphi \left( m \right)}{\gcd \left( n,\varphi \left( m \right) \right)}. g=[gcd(n,φ(m))φ(m)]=gcd(n,φ(m))φ(m).

推论4  p p p是奇素数, 则在模 p p p的一个既约剩余系中有 p − 1 2 \frac{p-1}{2} 2p1 2 2 2次剩余.

证明 由推论3, 在模 p p p的一个既约剩余系中 2 2 2次剩余的个数是
φ ( p ) gcd ⁡ ( 2 , φ ( p ) ) = p − 1 gcd ⁡ ( 2 , p − 1 ) = p − 1 2 .   ( 2 ∣ p − 1 ) \frac{\varphi \left( p \right)}{\gcd \left( 2,\varphi \left( p \right) \right)}=\frac{p-1}{\gcd \left( 2,p-1 \right)}=\frac{p-1}{2}.\text{ }\left( \left. 2 \right|p-1 \right) gcd(2,φ(p))φ(p)=gcd(2,p1)p1=2p1. (2p1)

定理5 设 m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0, a ∈ Z a\in \mathbb{Z} aZ, gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1, 若 a a a是模 m m m n n n次剩余, 则 x n ≡ a     m o d   m { {x}^{n}}\equiv a\text{ }\bmod m xna modm gcd ⁡ ( n , φ ( m ) ) \gcd \left( n,\varphi \left( m \right) \right) gcd(n,φ(m))个解 (针对方程解的个数).

证明

  1. 首先证明方程
    A y = B     m o d   M (5.1) Ay=B\text{ }\bmod M \tag{5.1} Ay=B modM(5.1)
    的解在模 M M M的意义下有 gcd ⁡ ( A , M ) \gcd \left( A,M \right) gcd(A,M)个.
    由式(5.1), ∃ z ∈ Z \exists z\in \mathbb{Z} zZ, 成立
    A y + M z = B . (5.2) Ay+Mz=B. \tag{5.2} Ay+Mz=B.(5.2)
    由式(5.2)也能推得式(5.1)成立, 因此式(5.1)中解 y     m o d   M y\text{ }\bmod M y modM的个数 = = =式(5.2)中解 y     m o d   M y\text{ }\bmod M y modM的个数. 若式(5.2)有特解 y 0 { {y}_{0}} y0, 则有通解
    y ( t ) = y 0 − M gcd ⁡ ( A , M ) t ,   t ∈ Z . (5.3) y\left( t \right)={ {y}_{0}}-\frac{M}{\gcd \left( A,M \right)}t,\text{ }t\in \mathbb{Z}. \tag{5.3} y(t)=y0gcd(A,M)Mt, tZ.(5.3)
    若成立 y ( t 1 ) ≡ y ( t 2 )     m o d   M y\left( { {t}_{1}} \right)\equiv y\left( { {t}_{2}} \right)\text{ }\bmod M y(t1)y(t2) modM, 由式(5.3), 则有
    y 0 − M gcd ⁡ ( A , M ) t 1 ≡ y 0 − M gcd ⁡ ( A , M ) t 2     m o d   M . ⇔ M gcd ⁡ ( A , M ) t 1 ≡ M gcd ⁡ ( A , M ) t 2     m o d   M . ⇔ M t 1 ≡ M t 2     m o d   ( M × gcd ⁡ ( A , M ) ) . ⇔ t 1 ≡ t 2     m o d   gcd ⁡ ( A , M ) . \begin{aligned} & { {y}_{0}}-\frac{M}{\gcd \left( A,M \right)}{ {t}_{1}}\equiv { {y}_{0}}-\frac{M}{\gcd \left( A,M \right)}{ {t}_{2}}\text{ }\bmod M. \\ & \Leftrightarrow \frac{M}{\gcd \left( A,M \right)}{ {t}_{1}}\equiv \frac{M}{\gcd \left( A,M \right)}{ {t}_{2}}\text{ }\bmod M. \\ & \Leftrightarrow M{ {t}_{1}}\equiv M{ {t}_{2}}\text{ }\bmod \left( M\times \gcd \left( A,M \right) \right). \\ & \Leftrightarrow { {t}_{1}}\equiv { {t}_{2}}\text{ }\bmod \gcd \left( A,M \right). \\ \end{aligned} y0gcd(A,M)Mt1y0gcd(A,M)Mt2 modM.gcd(A,M)Mt1gcd(A,M)Mt2 modM.Mt1Mt2 mod(M×gcd(A,M)).t1t2 modgcd(A,M).
    于是式(5.1), (5.2)中在模 M M M的意义下 y y y均有 gcd ⁡ ( A , M ) \gcd \left( A,M \right) gcd(A,M)个解.

  2. 基于上面的论述, 若 a a a是模 m m m n n n次剩余, 由定义1, 方程
    x n ≡ a     m o d   m (5.4) { {x}^{n}}\equiv a\text{ }\bmod m \tag{5.4} xna modm(5.4)
    有解 x x x. 设 m m m的一个原根为 r r r. 由于 gcd ⁡ ( x n , m ) = gcd ⁡ ( a , m ) = 1 \gcd \left( { {x}^{n}},m \right)=\gcd \left( a,m \right)=1 gcd(xn,m)=gcd(a,m)=1, 因此 in d r ( x n ) ,  in d r ( a ) \text{in}{ {\text{d}}_{r}}\left( { {x}^{n}} \right),\text{ in}{ {\text{d}}_{r}}\left( a \right) indr(xn), indr(a)存在, 由博文《数论之指数和原根》中的定理5(2), 方程(5.4)解 x x x满足
    n in d r ( x ) ≡ in d r ( x n ) ≡ in d r ( a )     m o d   φ ( m ) . (5.5) n\text{in}{ {\text{d}}_{r}}\left( x \right)\equiv \text{in}{ {\text{d}}_{r}}\left( { {x}^{n}} \right)\equiv \text{in}{ {\text{d}}_{r}}\left( a \right)\text{ }\bmod \varphi \left( m \right). \tag{5.5} nindr(x)indr(xn)indr(a) modφ(m).(5.5)
    而由第一部分的论述, 式(5.5)解 in d r ( x )  mod φ ( m ) \text{in}{ {\text{d}}_{r}}\left( x \right)\text{ mod}\varphi \left( m \right) indr(x) modφ(m)的个数为 gcd ⁡ ( n , φ ( m ) ) \gcd \left( n,\varphi \left( m \right) \right) gcd(n,φ(m)), 而由于一个解 in d r ( x )     m o d   φ ( m ) \text{in}{ {\text{d}}_{r}}\left( x \right)\text{ }\bmod \varphi \left( m \right) indr(x) modφ(m)对应一个解 x     m o d   m x\text{ }\bmod m x modm, 因此解 x     m o d   m x\text{ }\bmod m x modm的个数也为 gcd ⁡ ( n , φ ( m ) ) \gcd \left( n,\varphi \left( m \right) \right) gcd(n,φ(m)).

定理6 (指数公式) 设 m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0有原根 r r r, a ∈ Z a\in \mathbb{Z} aZ, gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1, 则 a a a对模 m m m的指数为 φ ( m ) gcd ⁡ ( in d r ( a ) , φ ( m ) ) . \frac{\varphi \left( m \right)}{\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)}. gcd(indr(a),φ(m))φ(m).

证明 设 a a a对模 m m m的指数为 δ \delta δ.

  1. 首先证明成立
    φ ( m ) gcd ⁡ ( in d r ( a ) , φ ( m ) ) ∣ δ . \left. \frac{\varphi \left( m \right)}{\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)} \right|\delta . gcd(indr(a),φ(m))φ(m)δ.
    δ \delta δ a a a对模 m m m的指数, 成立
    a δ ≡ 1     m o d   m . (6.1) { {a}^{\delta }}\equiv 1\text{ }\bmod m. \tag{6.1} aδ1 modm.(6.1)
    gcd ⁡ ( a δ , m ) = gcd ⁡ ( 1 , m ) = 1 \gcd \left( { {a}^{\delta }},m \right)=\gcd \left( 1,m \right)=1 gcd(aδ,m)=gcd(1,m)=1, in d r ( a δ ) ,  in d r ( 1 ) \text{in}{ {\text{d}}_{r}}\left( { {a}^{\delta }} \right),\text{ in}{ {\text{d}}_{r}}\left( 1 \right) indr(aδ), indr(1)存在. 对式(6.1)两边取 in d r \text{in}{ {\text{d}}_{r}} indr, 由博文《数论之指数和原根》中的定理5(2), 得到
    δ in d r ( a ) ≡ in d r ( a δ ) ≡ in d r ( 1 ) = 0  mod φ ( m ) . (6.2) \delta \text{in}{ {\text{d}}_{r}}\left( a \right)\equiv \text{in}{ {\text{d}}_{r}}\left( { {a}^{\delta }} \right)\equiv \text{in}{ {\text{d}}_{r}}\left( 1 \right)=0\text{ mod}\varphi \left( m \right). \tag{6.2} δindr(a)indr(aδ)indr(1)=0 modφ(m).(6.2)
    式(6.2)蕴涵了
    φ ( m ) ∣ δ in d r ( a ) . (6.3) \left. \varphi \left( m \right) \right|\delta \text{in}{ {\text{d}}_{r}}\left( a \right). \tag{6.3} φ(m)δindr(a).(6.3)
    gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1, 由欧拉定理, 成立
    a φ ( m ) ≡ 1     m o d   m . (6.4) { {a}^{\varphi \left( m \right)}}\equiv 1\text{ }\bmod m. \tag{6.4} aφ(m)1 modm.(6.4)
    由式(6.4)和博文《数论之指数和原根》中的定理5(3), 成立
    δ ∣ φ ( m ) . (6.5) \left. \delta \right|\varphi \left( m \right). \tag{6.5} δφ(m).(6.5)
    式(6.3), (6.5)蕴涵了
    φ ( m ) δ ∣ in d r ( a ) . (6.6) \left. \frac{\varphi \left( m \right)}{\delta } \right|\text{in}{ {\text{d}}_{r}}\left( a \right). \tag{6.6} δφ(m)indr(a).(6.6)
    由式(6.5), 也显然成立
    φ ( m ) δ ∣ φ ( m ) . (6.7) \left. \frac{\varphi \left( m \right)}{\delta } \right|\varphi \left( m \right). \tag{6.7} δφ(m)φ(m).(6.7)
    由式(6.6), (6.7)和最大公因数的性质, 得到 φ ( m ) δ ∣ gcd ⁡ ( in d r ( a ) , φ ( m ) ) \left. \frac{\varphi \left( m \right)}{\delta } \right|\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right) δφ(m)gcd(indr(a),φ(m)), 即有
    φ ( m ) ∣ δ gcd ⁡ ( in d r ( a ) , φ ( m ) ) . (6.8) \left. \varphi \left( m \right) \right|\delta \gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right). \tag{6.8} φ(m)δgcd(indr(a),φ(m)).(6.8)
    显然成立
    gcd ⁡ ( in d r ( a ) , φ ( m ) ) ∣ φ ( m ) . (6.9) \left. \gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right) \right|\varphi \left( m \right). \tag{6.9} gcd(indr(a),φ(m))φ(m).(6.9)
    由式(6.8), (6.9), 成立
    φ ( m ) gcd ⁡ ( in d r ( a ) , φ ( m ) ) ∣ δ . (6.10) \left. \frac{\varphi \left( m \right)}{\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)} \right|\delta. \tag{6.10} gcd(indr(a),φ(m))φ(m)δ.(6.10)

  2. 再证明成立
    δ ∣ φ ( m ) gcd ⁡ ( in d r ( a ) , φ ( m ) ) . \left. \delta \right|\frac{\varphi \left( m \right)}{\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)}. δgcd(indr(a),φ(m))φ(m).
    事实上, 由于 r r r是模 m m m的原根, 成立
    r φ ( m ) ≡ 1     m o d   m . (6.11) { {r}^{\varphi \left( m \right)}}\equiv 1\text{ }\bmod m. \tag{6.11} rφ(m)1 modm.(6.11)
    基于式(6.11), 得到
    a φ ( m ) gcd ⁡ ( in d r ( a ) , φ ( m ) ) ≡ ( r in d r ( a ) ) φ ( m ) gcd ⁡ ( in d r ( a ) , φ ( m ) ) = ( r φ ( m ) ) in d r ( a ) gcd ⁡ ( in d r ( a ) , φ ( m ) ) ≡ 1    m o d   m , { {a}^{\frac{\varphi \left( m \right)}{\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)}}}\equiv { {\left( { {r}^{\text{in}{ {\text{d}}_{r}}\left( a \right)}} \right)}^{\frac{\varphi \left( m \right)}{\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)}}}={ {\left( { {r}^{\varphi \left( m \right)}} \right)}^{\frac{\text{in}{ {\text{d}}_{r}}\left( a \right)}{\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)}}}\equiv \text{1 }\bmod m, agcd(indr(a),φ(m))φ(m)(rindr(a))gcd(indr(a),φ(m))φ(m)=(rφ(m))gcd(indr(a),φ(m))indr(a)modm,
    其中 in d r ( a ) gcd ⁡ ( in d r ( a ) , φ ( m ) ) ∈ Z > 0 \frac{\text{in}{ {\text{d}}_{r}}\left( a \right)}{\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)}\in { {\mathbb{Z}}_{>0}} gcd(indr(a),φ(m))indr(a)Z>0. 根据博文《数论之指数和原根》中的定理5(3), 立即得到
    δ ∣ φ ( m ) gcd ⁡ ( in d r ( a ) , φ ( m ) ) . (6.12) \left. \delta \right|\frac{\varphi \left( m \right)}{\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)}. \tag{6.12} δgcd(indr(a),φ(m))φ(m).(6.12)

  3. 由式(6.10), (6.12), 成立
    δ = φ ( m ) gcd ⁡ ( in d r ( a ) , φ ( m ) ) . \delta =\frac{\varphi \left( m \right)}{\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)}. δ=gcd(indr(a),φ(m))φ(m).

推论7 设 m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0有原根 r r r, a ∈ Z a\in \mathbb{Z} aZ, gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1, 则 a a a是模 m m m的原根当且仅当 gcd ⁡ ( in d r ( a ) , φ ( m ) ) = 1. \gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)=1. gcd(indr(a),φ(m))=1.

证明 a a a是模 m m m的原根 蕴涵 a a a对模 m m m的指数 δ = φ ( m ) \delta =\varphi \left( m \right) δ=φ(m), 由定理6, 成立
δ = φ ( m ) = φ ( m ) gcd ⁡ ( in d r ( a ) , φ ( m ) ) , \delta =\varphi \left( m \right)=\frac{\varphi \left( m \right)}{\gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)}, δ=φ(m)=gcd(indr(a),φ(m))φ(m),
即有
gcd ⁡ ( in d r ( a ) , φ ( m ) ) = 1. \gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)=1. gcd(indr(a),φ(m))=1.

定理8 设 m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0有原根, δ ∈ Z > 0 \delta \in { {\mathbb{Z}}_{>0}} δZ>0 δ ∣ φ ( m ) \left. \delta \right|\varphi \left( m \right) δφ(m), 则成立 ∣ { a ∈ Z :   1 ≤ a < m ,   gcd ⁡ ( a , m ) = 1 ,   a 对 模 m 的 指 数 = δ } ∣ = φ ( δ ) . \left| \left\{ a\in \mathbb{Z}:\text{ }1\le a<m,\text{ }\gcd \left( a,m \right)=1,\text{ }a对模m的指数=\delta \right\} \right|=\varphi \left( \delta \right). { aZ: 1a<m, gcd(a,m)=1, am=δ}=φ(δ).

证明 设 r r r是模 m m m的一个原根, 记
T = { a ∈ Z :   1 ≤ a < m ,   gcd ⁡ ( a , m ) = 1 ,   a 对 模 m 的 指 数 = δ } . (8.1) T=\left\{ a\in \mathbb{Z}:\text{ }1\le a<m,\text{ }\gcd \left( a,m \right)=1,\text{ }a对模m的指数=\delta \right\}. \tag{8.1} T={ aZ: 1a<m, gcd(a,m)=1, am=δ}.(8.1)
根据定理6, a a a对模 m m m的指数 δ \delta δ满足
δ = φ ( m ) gcd ( in d r ( a ) , φ ( m ) ) . \delta =\frac{\varphi \left( m \right)}{\text{gcd}\left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)}. δ=gcd(indr(a),φ(m))φ(m).
因此式(8.1)可等价表示为
T = { a ∈ Z :   1 ≤ a < m ,   gcd ⁡ ( a , m ) = 1 ,  gcd ( in d r ( a ) , φ ( m ) ) = φ ( m ) δ } . (8.2) T=\left\{ a\in \mathbb{Z}:\text{ }1\le a<m,\text{ }\gcd \left( a,m \right)=1,\text{ gcd}\left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)=\frac{\varphi \left( m \right)}{\delta } \right\}. \tag{8.2} T={ aZ: 1a<m, gcd(a,m)=1, gcd(indr(a),φ(m))=δφ(m)}.(8.2)
满足 1 ≤ a < m 1\le a<m 1a<m gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1的数构成模 m m m的一个既约剩余系 Υ \Upsilon Υ, ∣ Υ ∣ = φ ( m ) \left| \Upsilon \right|=\varphi \left( m \right) Υ=φ(m). ∀ a 1 , a 2 ∈ Υ \forall { {a}_{1}},{ {a}_{2}}\in \Upsilon a1,a2Υ满足 a 1 ≠ a 2 { {a}_{1}}\ne { {a}_{2}} a1=a2, in d r ( a 1 ) ≠ in d r ( a 2 ) \text{in}{ {\text{d}}_{r}}\left( { {a}_{1}} \right)\ne \text{in}{ {\text{d}}_{r}}\left( { {a}_{2}} \right) indr(a1)=indr(a2); ∀ a ∈ Υ \forall a\in \Upsilon aΥ, in d r ( a ) ∈ { 0 , 1 , ⋯   , φ ( m ) − 1 } \text{in}{ {\text{d}}_{r}}\left( a \right)\in \left\{ 0,1,\cdots ,\varphi \left( m \right)-1 \right\} indr(a){ 0,1,,φ(m)1}. 因此 Υ \Upsilon Υ { 0 , 1 , ⋯   , φ ( m ) − 1 } \left\{ 0,1,\cdots ,\varphi \left( m \right)-1 \right\} { 0,1,,φ(m)1}之间存在一一对应的关系(这点很重要). 基于此, 式(8.2)可等价表示为
T = { in d r ( a ) ∈ Z :  0 ≤ in d r ( a ) < φ ( m ) ,  gcd ( in d r ( a ) , φ ( m ) ) = φ ( m ) δ } . (8.3) T=\left\{ \text{in}{ {\text{d}}_{r}}\left( a \right)\in \mathbb{Z}:\text{ 0}\le \text{in}{ {\text{d}}_{r}}\left( a \right)<\varphi \left( m \right),\text{ gcd}\left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)=\frac{\varphi \left( m \right)}{\delta } \right\}. \tag{8.3} T={ indr(a)Z: 0indr(a)<φ(m), gcd(indr(a),φ(m))=δφ(m)}.(8.3)
由式(8.4)
gcd ⁡ ( in d r ( a ) , φ ( m ) ) = φ ( m ) δ (8.4) \gcd \left( \text{in}{ {\text{d}}_{r}}\left( a \right),\varphi \left( m \right) \right)=\frac{\varphi \left( m \right)}{\delta } \tag{8.4} gcd(indr(a),φ(m))=δφ(m)(8.4)
φ ( m ) δ ∣ in d r ( a ) \left. \frac{\varphi \left( m \right)}{\delta } \right|\text{in}{ {\text{d}}_{r}}\left( a \right) δφ(m)indr(a), 可设 in d r ( a ) = φ ( m ) δ u \text{in}{ {\text{d}}_{r}}\left( a \right)=\frac{\varphi \left( m \right)}{\delta }u indr(a)=δφ(m)u. 则式(8.4)等价于
gcd ⁡ ( φ ( m ) δ u , φ ( m ) δ δ ) = φ ( m ) δ gcd ⁡ ( u , δ ) = φ ( m ) δ , \gcd \left( \frac{\varphi \left( m \right)}{\delta }u,\frac{\varphi \left( m \right)}{\delta }\delta \right)=\frac{\varphi \left( m \right)}{\delta }\gcd \left( u,\delta \right)=\frac{\varphi \left( m \right)}{\delta }, gcd(δφ(m)u,δφ(m)δ)=δφ(m)gcd(u,δ)=δφ(m),
蕴涵了
gcd ⁡ ( u , δ ) = 1. \gcd \left( u,\delta \right)=1. gcd(u,δ)=1.
0 ≤ in d r ( a ) < φ ( m ) 0\le \text{in}{ {\text{d}}_{r}}\left( a \right)<\varphi \left( m \right) 0indr(a)<φ(m)也蕴涵 0 ≤ φ ( m ) δ u < φ ( m ) 0\le \frac{\varphi \left( m \right)}{\delta }u<\varphi \left( m \right) 0δφ(m)u<φ(m)
0 ≤ u < δ . 0\le u<\delta . 0u<δ.
因此式(8.3)可等价表示为
T = { φ ( m ) δ u ∈ Z :   0 ≤ u < δ ,   gcd ⁡ ( u , δ ) = 1 } . T=\left\{ \frac{\varphi \left( m \right)}{\delta }u\in \mathbb{Z}:\text{ }0\le u<\delta ,\text{ }\gcd \left( u,\delta \right)=1 \right\}. T={ δφ(m)uZ: 0u<δ, gcd(u,δ)=1}.
至此显然可以看出 ∣ T ∣ = φ ( δ ) . \left| T \right|=\varphi \left( \delta \right). T=φ(δ). 定理8得证.

推论9 设 m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0有原根, 则 m m m的原根有 φ ( φ ( m ) ) \varphi \left( \varphi \left( m \right) \right) φ(φ(m))个.

证明 m m m的原根对模 m m m的指数均为 φ ( m ) \varphi \left( m \right) φ(m), 由定理8, 立即可得模 m m m原根个数为 φ ( φ ( m ) ) \varphi \left( \varphi \left( m \right) \right) φ(φ(m))个.

定理10 设 q 1 , q 2 , ⋯   , q s { {q}_{1}},{ {q}_{2}},\cdots ,{ {q}_{s}} q1,q2,,qs φ ( m ) \varphi \left( m \right) φ(m)的一切不同的素因数, 则 g g g是模 m m m的一个原根的充分必要条件是 g g g是对模 m m m q i ( i = 1 , 2 , ⋯   , s ) { {q}_{i}}\left( i=1,2,\cdots ,s \right) qi(i=1,2,,s)次非剩余.

证明
( ⇒ ) \left( \Rightarrow \right) () g g g是模 m m m的一个原根, 则有 gcd ⁡ ( g , m ) = 1 \gcd \left( g,m \right)=1 gcd(g,m)=1. 成立
2 ≤ q i = gcd ⁡ ( q i , φ ( m ) ) ∣ in d g ( g ) = 1 ,   ∀ i ∈ { 1 , 2 , ⋯   , s } . 2\le { {q}_{i}}=\gcd \left( { {q}_{i}},\varphi \left( m \right) \right)\cancel{|}\text{in}{ {\text{d}}_{g}}\left( g \right)=1,\text{ }\forall i\in \left\{ 1,2,\cdots ,s \right\}. 2qi=gcd(qi,φ(m)) indg(g)=1, i{ 1,2,,s}.
定理2, g g g是对模 m m m q i ( i = 1 , 2 , ⋯   , s ) { {q}_{i}}\left( i=1,2,\cdots ,s \right) qi(i=1,2,,s)次非剩余.

( ⇐ ) \left( \Leftarrow \right) () g g g是对模 m m m q i ( i = 1 , 2 , ⋯   , s ) { {q}_{i}}\left( i=1,2,\cdots ,s \right) qi(i=1,2,,s)次非剩余, 则成立
a φ ( m ) q i = a φ ( m ) gcd ⁡ ( q i , φ ( m ) ) ≡ 1     m o d   m ,   ∀ i ∈ { 1 , 2 , ⋯   , s } . { {a}^{\frac{\varphi \left( m \right)}{ { {q}_{i}}}}}={ {a}^{\frac{\varphi \left( m \right)}{\gcd \left( { {q}_{i}},\varphi \left( m \right) \right)}}}\cancel{\equiv }1\text{ }\bmod m,\text{ }\forall i\in \left\{ 1,2,\cdots ,s \right\}. aqiφ(m)=agcd(qi,φ(m))φ(m) 1 modm, i{ 1,2,,s}.
由于 q 1 , q 2 , ⋯   , q s { {q}_{1}},{ {q}_{2}},\cdots ,{ {q}_{s}} q1,q2,,qs φ ( m ) \varphi \left( m \right) φ(m)的一切不同的素因数, 由博文《原根的存在性 相关定理(二)》中的定理14, g g g是模 m m m的一个原根.

猜你喜欢

转载自blog.csdn.net/qq_44261017/article/details/111305279
今日推荐