数据结构(一)-- 时间复杂度问题

时间复杂度

拿到算法的执行次数函数 T(n) ==>得到算法的时间复杂度

1.我们知道常数项对函数的增长速度影响并不大,所以当 T(n) = c,c 为一个常数的时候,我们说这个算法的时间复杂度为 O(1);如果 T(n) 不等于一个常数项时,直接将常数项省略。

比如
 T(n) = 2,(算法)的时间复杂度为 O(1)。
T(n) = n + 29,此时时间复杂度为 O(n)。

2.我们知道高次项对于函数的增长速度的影响是最大的。n^3 的增长速度是远超 n^2 的,同时 n^2 的增长速度是远超 n 的。 同时因为要求的精度不高,所以我们直接忽略低此项。

比如
T(n) = n^3 + n^2 + 29,此时时间复杂度为 O(n^3)。

3.因为函数的阶数对函数的增长速度的影响是最显著的,所以我们忽略与最高阶相乘的常数。

比如
T(n) = 3n^3,此时时间复杂度为 O(n^3)。

综合起来:如果一个算法的执行次数是 T(n),那么只保留最高次项,同时忽略最高项的系数后得到函数 f(n),此时算法的时间复杂度就是 O(f(n))

小例子

1.对于一个循环,假设循环体的时间复杂度为 O(n),循环次数为 m,则这个
循环的时间复杂度为 O(n×m)。

void aFunc(int n) {
    for(int i = 0; i < n; i++) {         // 循环次数为 n
        printf("Hello, World!\n");      // 循环体时间复杂度为 O(1)
    }
}

此时时间复杂度为 O(n × 1),即 O(n)。

2.对于多个循环,假设循环体的时间复杂度为 O(n),各个循环的循环次数分别是a, b, c…,则这个循环的时间复杂度为 O(n×a×b×c…)。分析的时候应该由里向外分析这些循环。

void aFunc(int n) {
    for(int i = 0; i < n; i++) {         // 循环次数为 n
        for(int j = 0; j < n; j++) {       // 循环次数为 n
            printf("Hello, World!\n");      // 循环体时间复杂度为 O(1)
        }
    }
}

此时时间复杂度为 O(n × n × 1),即 O(n^2)。

3.对于顺序执行的语句或者算法,总的时间复杂度等于其中最大的时间复杂度。

void aFunc(int n) {
    // 第一部分时间复杂度为 O(n^2)
    for(int i = 0; i < n; i++) {
        for(int j = 0; j < n; j++) {
            printf("Hello, World!\n");
        }
    }
    // 第二部分时间复杂度为 O(n)
    for(int j = 0; j < n; j++) {
        printf("Hello, World!\n");
    }
}

此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。

4.对于条件判断语句,总的时间复杂度等于其中 时间复杂度最大的路径 的时间复杂度。

void aFunc(int n) {
    if (n >= 0) {
        // 第一条路径时间复杂度为 O(n^2)
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < n; j++) {
                printf("输入数据大于等于零\n");
            }
        }
    } else {
        // 第二条路径时间复杂度为 O(n)
        for(int j = 0; j < n; j++) {
            printf("输入数据小于零\n");
        }
    }
}

此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。

练习

基础题

void aFunc(int n) {
    for (int i = 0; i < n; i++) {
        for (int j = i; j < n; j++) {
            printf("Hello World\n");
        }
    }
}

答案:T(n) =n+n-1+n-2…+1=n(n+1)/2
O(n) = n2

进阶题

void aFunc(int n) {
    for (int i = 2; i < n; i++) {
        i *= 2;
        printf("%i\n", i);
    }
}

答案:假设循环次数为 t,则循环条件满足 2^t < n。
可以得出,执行次数t = log(2)(n),即 T(n) = log(2)(n),可见时间复杂度为 O(log(2)(n)),即 O(log n)。

再次进阶

long aFunc(int n) {
    if (n <= 1) {
        return 1;
    } else {
        return aFunc(n - 1) + aFunc(n - 2);
    }
}

答案:显然运行次数,T(0) = T(1) = 1,同时 T(n) = T(n - 1) + T(n - 2) + 1,这里的 1 是其中的加法算一次执行。
显然 T(n) = T(n - 1) + T(n - 2) 是一个斐波那契数列,通过归纳证明法可以证明,当 n >= 1 时 T(n) < (5/3)^n,同时当 n > 4 时 T(n) >= (3/2)^n。
所以该方法的时间复杂度可以表示为 O((5/3)^n),简化后为 O(2^n)。

猜你喜欢

转载自blog.csdn.net/Touale/article/details/112546623