深度强化学习之DQN实战

今天我们会将我们上一篇文章讲解的DQN的理论进行实战,实战的背景目前仍然是探险者上天堂游戏,不过在下一次开始我们会使用OpenAI gym的环境库,玩任何我们想玩的游戏。

算法公式


看上去整个算法似乎很复杂,其实就是Q-Learning的框架加了三样东西

  • experience replay(经验池)
  • 神经网络计算Q值
  • 暂时冻结q_target参数

接下来我们就一步步把上篇文章学习到的理论实现把。

DQN与环境交互部分

这里没有太多需要说明的,就是按照算法流程编写。

from maze_env import Maze
from DQN_modified import DeepQNetwork


def run_maze():
    step = 0#用来控制什么时候学习
    for episode in range(25000):
        # 初始化环境
        observation = env.reset()

        while True:
            # 刷新环境
            env.render()

            # DQN根据观测值选择行为
            action = RL.choose_action(observation)

            # 环境根据行为给出下一个state,reward,是否终止
            observation_, reward, done = env.step(action)

            #DQN存储记忆
            RL.store_transition(observation, action, reward, observation_)

            #控制学习起始时间和频率(选择200步之后再每5步学习一次的原因是先累积一些记忆再开始学习)
            if (step > 200) and (step % 5 == 0):
                RL.learn()

            # swap observation
            observation = observation_
            observation = observation_

            # break while loop when end of this episode
            if done:
                break
            step += 1

    # end of game
    print('game over')
    env.destroy()


if __name__ == "__main__":
    # maze game
    env = Maze()
    RL = DeepQNetwork(env.n_actions, env.n_features,
                      learning_rate=0.01,
                      reward_decay=0.9,
                      e_greedy=0.9,
                      replace_target_iter=200,#每200步替换一次target_net的参数
                      memory_size=2000, #记忆上线
                      # output_graph=True #是否输出tensorboard文件
                      )
    env.after(100, run_maze)
    env.mainloop()
    RL.plot_cost()

编写target_net和eval_net两个网络

上一篇文章提到,我们引入两个CNN来降低当前Q值和目标Q值的相关性,提高了算法的稳定性,所以接下来我们就来搭建这两个神经网络。target_net用来预测q_target的值,他不会及时更新参数。而eval_net用来预测q_eval,这个神经网络拥有最新的神经网络参数。这两个神经网络结果是完全一样的,只是里面的参数不同。

两个神经网络是为了固定住一个神经网络(target_net)的参数,也就是说target_neteval_net的一个历史版本,拥有eval_net很久之前的一组参数,而且这组参数被固定一段时间后再被eval_net的新参数所替换。而eval_net是不断在被提升的,所以是一个可以被训练的网络trainable=True。而target_nettrainable=False

import numpy as np
import tensorflow as tf

np.random.seed(1)
tf.set_random_seed(1)


# Deep Q Network off-policy
class DeepQNetwork:
    def _build_net(self):
        # ------------------ all inputs ------------------------
        self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s')  # input State
        self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_')  # input Next State
        self.r = tf.placeholder(tf.float32, [None, ], name='r')  # input Reward
        self.a = tf.placeholder(tf.int32, [None, ], name='a')  # input Action

        w_initializer, b_initializer = tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1)

        # ------------------ build evaluate_net ------------------
        with tf.variable_scope('eval_net'):
            e1 = tf.layers.dense(self.s, 20, tf.nn.relu, kernel_initializer=w_initializer,
                                 bias_initializer=b_initializer, name='e1')
            self.q_eval = tf.layers.dense(e1, self.n_actions, kernel_initializer=w_initializer,
                                          bias_initializer=b_initializer, name='q')

        # ------------------ build target_net ------------------
        with tf.variable_scope('target_net'):
            t1 = tf.layers.dense(self.s_, 20, tf.nn.relu, kernel_initializer=w_initializer,
                                 bias_initializer=b_initializer, name='t1')
            self.q_next = tf.layers.dense(t1, self.n_actions, kernel_initializer=w_initializer,
                                          bias_initializer=b_initializer, name='t2')

        with tf.variable_scope('q_target'):
            q_target = self.r + self.gamma * tf.reduce_max(self.q_next, axis=1, name='Qmax_s_')    # shape=(None, )
            self.q_target = tf.stop_gradient(q_target)#使用stop_gradient对q_target反传截断,方便计算loss
        with tf.variable_scope('q_eval'):
            a_indices = tf.stack([tf.range(tf.shape(self.a)[0], dtype=tf.int32), self.a], axis=1)
            self.q_eval_wrt_a = tf.gather_nd(params=self.q_eval, indices=a_indices)    # shape=(None, )
        with tf.variable_scope('loss'):
            self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval_wrt_a, name='TD_error'))
        with tf.variable_scope('train'):
            self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)

    def store_transition(self, s, a, r, s_):
        if not hasattr(self, 'memory_counter'):
            self.memory_counter = 0
        #记录一条[s,a,r,s_]的记录
        transition = np.hstack((s, [a, r], s_))
        # 总memory大小是固定的,如果超出总大小,旧memory就被新的memory替换
        index = self.memory_counter % self.memory_size
        self.memory[index, :] = transition#替换过程
        self.memory_counter += 1

    def choose_action(self, observation):
        # 统一observation的shape(1,size_of_obervation)
        observation = observation[np.newaxis, :]

        if np.random.uniform() < self.epsilon:
            # 让eval_net神经网络生成所有action的值,并选择值最大的action
            actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
            action = np.argmax(actions_value)
        else:
            action = np.random.randint(0, self.n_actions)
        return action

    def learn(self):
        # 检查是否替换了target_net的参数
        if self.learn_step_counter % self.replace_target_iter == 0:
            self.sess.run(self.target_replace_op)
            print('\ntarget_params_replaced\n')

        # 从memory中随机抽取batch_size这么多记忆
        if self.memory_counter > self.memory_size:
            sample_index = np.random.choice(self.memory_size, size=self.batch_size)
        else:
            sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
        batch_memory = self.memory[sample_index, :]

        #训练eval_net
        _, cost = self.sess.run(
            [self._train_op, self.loss],
            feed_dict={
                self.s: batch_memory[:, :self.n_features],
                self.a: batch_memory[:, self.n_features],
                self.r: batch_memory[:, self.n_features + 1],
                self.s_: batch_memory[:, -self.n_features:],
            })

        self.cost_his.append(cost)

        # 逐渐增强epsilon,降低行为的随机性
        self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
        self.learn_step_counter += 1

    def plot_cost(self):
        import matplotlib.pyplot as plt
        plt.plot(np.arange(len(self.cost_his)), self.cost_his)
        plt.ylabel('Cost')
        plt.xlabel('training steps')
        plt.show()

DQN其他部分

定义完两个神经网络之后,我们来定义其他部分,包括:

class DeepQNetwork:
    # 上次的内容
    def _build_net(self):

    # 这次的内容:
    # 初始值
    def __init__(self):

    # 存储记忆
    def store_transition(self, s, a, r, s_):

    # 选行为
    def choose_action(self, observation):

    # 学习
    def learn(self):

    # 看看学习效果 (可选)
    def plot_cost(self):

我们先设置预设值:

class DeepQNetwork:
    def __init__(
            self,
            n_actions,
            n_features,
            learning_rate=0.01,
            reward_decay=0.9,
            e_greedy=0.9,
            replace_target_iter=300,
            memory_size=500,
            batch_size=32,
            e_greedy_increment=None,
            output_graph=False,
    ):
        self.n_actions = n_actions
        self.n_features = n_features
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon_max = e_greedy #epsilon的最大值
        self.replace_target_iter = replace_target_iter #更换target_net的步数
        self.memory_size = memory_size #记忆上限
        self.batch_size = batch_size #每次更新从memory里面取多少记忆出来
        self.epsilon_increment = e_greedy_increment #epsilon的增量
        self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max #是否开启探险模式,并逐步减少探险次数

        # 记录学习次数(用来判断是否更换target_net参数)
        self.learn_step_counter = 0

        # 初始化全0记忆 [s, a, r, s_]
        self.memory = np.zeros((self.memory_size, n_features * 2 + 2))#n_features是指state的横纵坐标两个特征

        # consist of [target_net, evaluate_net]
        self._build_net()

        t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_net') #提取target_net参数
        e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='eval_net') #提取eval_net的参数

        with tf.variable_scope('hard_replacement'):
            self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]#更新target_net参数

        self.sess = tf.Session()

        if output_graph:
            # $ tensorboard --logdir=logs
            tf.summary.FileWriter("logs/", self.sess.graph)

        self.sess.run(tf.global_variables_initializer())
        self.cost_his = []

存储记忆

DQN的精髓部分:经验池。记录下所有经历过的步,这些步可以进行反复的学习,所以是一种off-policy方法。

 def store_transition(self, s, a, r, s_):
        if not hasattr(self, 'memory_counter'):
            self.memory_counter = 0
        #记录一条[s,a,r,s_]的记录
        transition = np.hstack((s, [a, r], s_))
        # 总memory大小是固定的,如果超出总大小,旧memory就被新的memory替换
        index = self.memory_counter % self.memory_size
        self.memory[index, :] = transition#替换过程
        self.memory_counter += 1

选择action

    def choose_action(self, observation):
        # 统一observation的shape(1,size_of_obervation)
        observation = observation[np.newaxis, :]

        if np.random.uniform() < self.epsilon:
            # 让eval_net神经网络生成所有action的值,并选择值最大的action
            actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
            action = np.argmax(actions_value)
        else:
            action = np.random.

学习

这里涉及了target_neteval_net的交互使用。

    def learn(self):
        # 检查是否替换了target_net的参数
        if self.learn_step_counter % self.replace_target_iter == 0:
            self.sess.run(self.target_replace_op)
            print('\ntarget_params_replaced\n')

        # 从memory中随机抽取batch_size这么多记忆
        if self.memory_counter > self.memory_size:
            sample_index = np.random.choice(self.memory_size, size=self.batch_size)
        else:
            sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
        batch_memory = self.memory[sample_index, :]

        #训练eval_net
        _, cost = self.sess.run(
            [self._train_op, self.loss],
            feed_dict={
                self.s: batch_memory[:, :self.n_features],
                self.a: batch_memory[:, self.n_features],
                self.r: batch_memory[:, self.n_features + 1],
                self.s_: batch_memory[:, -self.n_features:],
            })

        self.cost_his.append(cost)

        # 逐渐增强epsilon,降低行为的随机性
        self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
        self.learn_step_counter += 1

我们可以看下输出的cost曲线:

有了解过深度学习的同学可能会比较的惊讶,cost曲线不应该是平稳下降的吗,为什么这里反而到后面cost又突然变高。这是因为DQN中的input数据是一步步改变的,而且会根据学习情况,获取到不同的数据,所以这并不像一般的监督学习,DQN的cost曲线就会有所不同了。
所以我们改成统计reward来评判算法,设置每隔replace_target_iter=200就统计一次找到宝藏的次数。eplace_target_iter针对的是learn_step_counter,也就是说每学200次就统计一次,而每走5step才学一次,实际上是每走1000step统计一下在这1000step内找到几次宝藏。而每1000step后target_net神经网络参数就更新一次,导致evaluate_net收敛的目标发生变化,会导致性能上的波动。cost仅仅是evaluate_net更新神经网络时的中间参数,而每走1000step找到宝藏的次数才是真正的性能指标。可以看到,走到20000step时性能基本稳定下来。
参考:https://github.com/MorvanZhou

猜你喜欢

转载自blog.csdn.net/cristiano20/article/details/96706946