ACM算法总结 线性递推(BM)



BM算法,全称是Berlekamp-Massey算法,给出某个其次的线性递推数列的前面若干项,它可以自动算出这个齐次式,以及计算出后面第 K 项的值。我依然不理解这个算法,这里只是记录一下有这个东西。

代码:

const int maxn=40005;
const LL M=998244353;
struct linear_sequence
{
    LL res[maxn],base[maxn],_c[maxn],_md[maxn];
    VI Md;

    LL ksm(LL x,LL n)
    {
        LL ret=1;
        while(n)
        {
            if(n&1) ret=ret*x%M;
            x=x*x%M;
            n>>=1;
        }
        return ret;
    }
    void multi(LL *a,LL *b,int k)
    {
        REP(i,0,(k<<1)-1) _c[i]=0;
        REP(i,0,k-1) if(a[i]) REP(j,0,k-1)
            _c[i+j]=(_c[i+j]+a[i]*b[j])%M;
        REP_(i,k+k-1,k) if(_c[i]) REP(j,0,Md.size()-1)
            _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%M;
        REP(i,0,k-1) a[i]=_c[i];
    }
    int solve(LL n,VI a,VI b)
    {
        LL ans=0,pnt=0;
        int k=a.size();
        //assert(a.size()==b.size());
        REP(i,0,k-1) _md[k-1-i]=-a[i];
        _md[k]=1;
        Md.clear();
        REP(i,0,k-1) if(_md[i]) Md.pb(i);
        REP(i,0,k-1) res[i]=base[i]=0;
        res[0]=1;
        while((1ll<<pnt)<=n) pnt++;
        REP_(p,pnt,0)
        {
            multi(res,res,k);
            if((n>>p)&1)
            {
                REP_(i,k-1,0) res[i+1]=res[i];
                res[0]=0;
                REP(j,0,Md.size()-1) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%M;
            }
        }
        REP(i,0,k-1) ans=(ans+res[i]*b[i])%M;
        return (ans+M)%M;
    }
    VI BM(VI s)
    {
        VI C(1,1),B(1,1);
        int L=0,m=1,b=1;
        REP(n,0,s.size()-1)
        {
            LL d=0;
            REP(i,0,L) d=(d+(LL)C[i]*s[n-i])%M;
            if(!d) ++m;
            else if((L<<1)<=n)
            {
                VI T=C;
                LL c=M-d*ksm(b,M-2)%M;
                while(C.size()<B.size()+m) C.pb(0);
                REP(i,0,B.size()-1) C[i+m]=(C[i+m]+c*B[i])%M;
                L=n+1-L,B=T,b=d,m=1;
            }
            else
            {
                LL c=M-d*ksm(b,M-2)%M;
                while(C.size()<B.size()+m) C.pb(0);
                REP(i,0,B.size()-1) C[i+m]=(C[i+m]+c*B[i])%M;
                ++m;
            }
        }
        return C;
    }
    int get(VI a,LL n)
    {
        VI c=BM(a);
        c.erase(c.begin());
        REP(i,0,c.size()-1) c[i]=(M-c[i])%M;
        //for(int i:c) printf("%d ",i);
        //puts("");
        return solve(n,c,VI(a.begin(),a.begin()+c.size()));
    }
};

假设要计算一个 K 阶齐次式(你还不知道它们的系数)的第 n 项,就把它大概前 2K 项扔进一个 vector 中,然后调用 get(a, n) 就可以得到第 n 项的结果。复杂度为 O ( k 2 l o g n ) O(k^2logn)

还要注意的是这里的数列下标是从 0 开始的。

猜你喜欢

转载自blog.csdn.net/dragonylee/article/details/107741780