stm32 cubeide 添加 cryptographic .a .lib 加密库 使用 RSA非对称加密解密

移植过程

在这里插入图片描述

  1. 从st官网下载cryptolib,解压文件,进入目录 .\STM32CubeExpansion_Crypto_V3.1.0\Fw_Crypto\STM32F4\Middlewares\ST
    注:本文针对F4芯片,其他芯片请参照路径自行更改
  2. 将目录下的文件夹 STM32_Cryptographic拷贝到需要移植的工程目录下
  3. 右键项目名称refresh, 文件已添加进工程内
  4. 右键项目名称Properties->C/C++ General->Paths and Symbols, 将新添加库.h文件的路径添加进工程。在这里插入图片描述
  5. 点击 Library Paths->add->输入库文件路径 在这里插入图片描述
  6. 点击 Library Paths->Add->输入库文件名称重点!!!:去掉库文件名开头的lib和末尾的.a在这里插入图片描述
  7. 非常重要!否则一直编译不通过 进入 C/C++ Build->Setting->Tool Settings->MCU Setting->Floating-point ABI 选择 -mfloat-abi=softfp在这里插入图片描述
  8. 以 RSA非对称加密解密为例,打开之前解压的文件目录 .\STM32CubeExpansion_Crypto_V3.1.0\Fw_Crypto\STM32F4\Projects\STM32F401RE-Nucleo\RSA\Enc_Dec\Src 打开main.c,拷贝所有内容。
  9. 在项目中适当位置,新建rsa.c/rsa.h文件,将main.c中内容,拷贝到rsa.c文件中,并对内容进行修改

rsa.c:

/* Includes ------------------------------------------------------------------*/
#include "rsa.h"

/** @addtogroup STM32_Crypto_Examples
 * @{
 */

/* Private typedef -----------------------------------------------------------*/
typedef enum
{
	FAILED = 0, PASSED = !FAILED
} TestStatus;
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/

uint8_t preallocated_buffer[4096]; /* buffer required for internal allocation of memory */

/******************************************************************************/
/************************** RSA 2048 Test Vector  ****************************/
/******************************************************************************/
const uint8_t Message[] =
{ 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x30, 0x31, 0x32, 0x33,
		0x34, 0x35, 0x36, 0x00};

const uint8_t Modulus[] =
{ 0xB5, 0x05, 0xFC, 0xA2, 0xCA, 0x33, 0x48, 0xD5, 0x9B, 0xF3, 0x00, 0x5F, 0x7C,
		0xFD, 0xC4, 0x56, 0x4C, 0x25, 0x07, 0x67, 0xE9, 0xC9, 0x40, 0x24, 0x69,
		0x79, 0x61, 0x41, 0x98, 0x1D, 0x6A, 0xF5, 0x6A, 0x1A, 0x84, 0xB5, 0xA9,
		0xA4, 0xB3, 0x33, 0x5F, 0xA0, 0x25, 0xA8, 0x7F, 0x4B, 0x4D, 0x0B, 0xA0,
		0x60, 0xB8, 0xBE, 0xF9, 0x34, 0x0B, 0xE4, 0x5F, 0xDB, 0x05, 0x76, 0x20,
		0x38, 0x90, 0xA0, 0x71, 0xCE, 0xE9, 0xB0, 0x59, 0x4B, 0x95, 0x12, 0x7B,
		0xB4, 0x80, 0xED, 0xC7, 0x43, 0xBD, 0xCE, 0x27, 0xFD, 0x2B, 0xEC, 0xD0,
		0x33, 0x00, 0x24, 0x32, 0x9E, 0xED, 0xAF, 0x3C, 0x1A, 0x12, 0x13, 0xB2,
		0x8D, 0x32, 0xD1, 0x83, 0xEA, 0xF4, 0x1A, 0x9A, 0x46, 0x3A, 0x08, 0x8C,
		0xD4, 0xBA, 0x67, 0xDA, 0x91, 0x26, 0x79, 0x49, 0xBA, 0xAA, 0x54, 0x26,
		0x56, 0x03, 0x76, 0xA7, 0x70, 0x58, 0x9E, 0xA8, 0x37, 0x60, 0xB8, 0xC5,
		0xC1, 0xF9, 0xDD, 0x54, 0x18, 0x4D, 0x7F, 0x91, 0xCC, 0x0A, 0xBB, 0x08,
		0xC3, 0x05, 0x3C, 0x04, 0x8B, 0xDC, 0xD0, 0xE9, 0x7A, 0x16, 0x28, 0x53,
		0x0D, 0x20, 0x74, 0x0B, 0xD1, 0xD5, 0x0F, 0x16, 0x48, 0x06, 0xB2, 0x5F,
		0x1E, 0x0A, 0xC9, 0xDD, 0x9E, 0x17, 0xE5, 0x00, 0xD6, 0xB9, 0x2D, 0x40,
		0xE6, 0xA8, 0xDC, 0x7F, 0xAE, 0x5B, 0x6B, 0x7F, 0x76, 0x27, 0xF7, 0xED,
		0x0C, 0xF5, 0x1D, 0xC1, 0x6F, 0xA4, 0x00, 0x45, 0x8A, 0x22, 0x09, 0x84,
		0xD1, 0xB4, 0xB1, 0x18, 0x44, 0x76, 0xC9, 0xD6, 0xA7, 0xC6, 0x72, 0x5B,
		0x43, 0x48, 0x91, 0x85, 0xBB, 0x7F, 0xB1, 0x44, 0x73, 0x45, 0xF5, 0x5A,
		0x7E, 0x72, 0x3D, 0xA1, 0x8C, 0x43, 0xAE, 0x83, 0xD9, 0xB4, 0xCB, 0x1D,
		0xDC, 0x26, 0x3F, 0x7F, 0x1E, 0xFE, 0x83, 0x6C, 0x9A, 0x0D, 0xEA, 0xE1,
		0x94, 0x55, 0xF1 };

const uint8_t PublicExponent[] =
{ 0x01, 0x00, 0x01 };

const uint8_t PrivateExponent[] =
{ 0x06, 0xBE, 0x0F, 0x57, 0xDC, 0xE2, 0x26, 0x1F, 0x56, 0xAC, 0xA9, 0x61, 0xE5,
		0x1C, 0xEA, 0x98, 0x30, 0x43, 0xDC, 0xCF, 0xC1, 0x04, 0x6E, 0xF0, 0x2C,
		0x41, 0x8A, 0x1E, 0xD0, 0x54, 0xA0, 0x2C, 0x3D, 0xE4, 0x78, 0xF6, 0xEF,
		0x37, 0xA4, 0x39, 0x10, 0xA1, 0xBD, 0x65, 0x56, 0x40, 0x6E, 0xC1, 0x35,
		0x1B, 0x05, 0x26, 0x8F, 0xCF, 0xA1, 0x75, 0xC3, 0x20, 0x3C, 0x46, 0xD7,
		0x12, 0x64, 0x48, 0xA5, 0x94, 0x88, 0x5D, 0xBA, 0x25, 0xB7, 0x8A, 0xB5,
		0xB2, 0xD6, 0x6E, 0x84, 0xD2, 0x80, 0x1A, 0x52, 0xA0, 0xFA, 0x66, 0xDA,
		0xA6, 0x5B, 0xA5, 0xFD, 0x80, 0xAF, 0xE7, 0xAB, 0xFC, 0x68, 0x99, 0xF5,
		0x37, 0x8F, 0x22, 0x00, 0xA0, 0xDA, 0xB0, 0xB6, 0xF8, 0x50, 0xA7, 0x0A,
		0xDF, 0xCD, 0x85, 0x9A, 0xBD, 0x77, 0x4A, 0x63, 0x35, 0xA1, 0xAC, 0x7A,
		0xB5, 0x0F, 0x71, 0xF6, 0xF0, 0x97, 0x4C, 0x59, 0x7B, 0x53, 0xD1, 0x71,
		0x98, 0x3D, 0xFD, 0x1E, 0xE3, 0x81, 0x39, 0x0A, 0xD7, 0x8D, 0x2B, 0x82,
		0x12, 0xCC, 0x9D, 0xF9, 0xC7, 0xEE, 0xAC, 0x90, 0x65, 0xC7, 0x01, 0xBC,
		0x58, 0x52, 0xEF, 0x02, 0x74, 0x04, 0x70, 0x87, 0xA0, 0x55, 0x42, 0xAF,
		0x89, 0xF2, 0x9B, 0x22, 0xFB, 0x14, 0x5D, 0xF3, 0x26, 0x55, 0xD3, 0x2F,
		0x04, 0xF0, 0x92, 0xC3, 0x1F, 0x45, 0x7B, 0x82, 0xE9, 0x0F, 0xF1, 0x8C,
		0xA2, 0x32, 0xA9, 0x56, 0x65, 0xC8, 0x2E, 0xA1, 0xA5, 0x95, 0x16, 0xBF,
		0xC5, 0xDB, 0x78, 0xF8, 0x83, 0xDB, 0xFD, 0x04, 0xD8, 0x29, 0x92, 0x58,
		0xD4, 0xE3, 0x8D, 0xD2, 0x66, 0xB6, 0xDB, 0x4A, 0xC0, 0x4B, 0xE0, 0xF4,
		0xF8, 0x02, 0x9B, 0xE8, 0xD3, 0x41, 0xD9, 0x4A, 0x32, 0x3C, 0x75, 0x43,
		0x19, 0xA8, 0x1F, 0x41, 0x90, 0x92, 0x1E, 0xF7, 0x18, 0xE8, 0x0C, 0x55,
		0xC2, 0x98, 0x01 };

const uint8_t EncryptedMessage[] =
{ 0x45, 0x4E, 0x4F, 0xE2, 0x40, 0xBA, 0xF4, 0xD9, 0xED, 0xEA, 0x65, 0x79, 0xB4,
		0xCF, 0x8D, 0xE4, 0x41, 0x3E, 0x56, 0x78, 0xAC, 0x5C, 0x47, 0x3F, 0x22,
		0x1F, 0x16, 0xCB, 0xBC, 0xFC, 0x9E, 0xB7, 0x31, 0x96, 0x37, 0x83, 0x3A,
		0xFE, 0x46, 0x51, 0x75, 0x27, 0xE6, 0x6F, 0x66, 0x3E, 0xC9, 0xB9, 0xB4,
		0x7C, 0x1E, 0xB8, 0xF3, 0xB1, 0xBA, 0x87, 0xF6, 0x12, 0x0F, 0xCA, 0xD7,
		0x63, 0xC0, 0x8A, 0x86, 0xE3, 0xF6, 0x1C, 0x61, 0x5A, 0x01, 0xDD, 0x3F,
		0x97, 0xC9, 0x2A, 0x55, 0x0B, 0x46, 0x25, 0xE6, 0xAE, 0x87, 0x72, 0x08,
		0xA8, 0x49, 0x10, 0xED, 0xE0, 0xAB, 0xD5, 0x73, 0xE4, 0xF2, 0x74, 0x01,
		0xCE, 0x7B, 0xAA, 0xD2, 0xC2, 0x86, 0xC1, 0x64, 0x8D, 0xD7, 0x63, 0xA4,
		0x7C, 0xDC, 0xA8, 0x21, 0x93, 0x12, 0x0D, 0xC3, 0x8D, 0xD9, 0x59, 0x97,
		0x80, 0xC1, 0xC7, 0x8F, 0x0D, 0x3B, 0x16, 0x3C, 0xE2, 0x2F, 0xB4, 0x52,
		0x8C, 0x0C, 0x15, 0xE5, 0x98, 0x81, 0xEF, 0xB4, 0xD3, 0x5E, 0x72, 0xC8,
		0x89, 0x64, 0xBE, 0x54, 0xEC, 0xFB, 0x38, 0x85, 0xB4, 0x62, 0x39, 0xA6,
		0xCC, 0xC4, 0x68, 0x0C, 0xDF, 0xA4, 0x5A, 0x9D, 0x34, 0x31, 0x2A, 0x0C,
		0x3B, 0x52, 0xCF, 0x13, 0xF3, 0xE8, 0x5A, 0x0C, 0xEA, 0x41, 0x94, 0xD5,
		0x25, 0xAA, 0xC0, 0x2B, 0xC8, 0xB2, 0x04, 0xA6, 0xCD, 0x26, 0xF6, 0x02,
		0x98, 0x89, 0x79, 0x62, 0x76, 0x76, 0xEF, 0xF4, 0x3C, 0x09, 0x16, 0x4B,
		0x1A, 0x9C, 0xCA, 0x4F, 0x42, 0x9A, 0xA2, 0x4B, 0x98, 0xF8, 0xFF, 0xBE,
		0xBF, 0xE4, 0xA0, 0x0F, 0xEB, 0xC1, 0xDB, 0x69, 0x4D, 0x93, 0x16, 0x5F,
		0x3D, 0xBF, 0xA1, 0xD8, 0x4D, 0x05, 0x21, 0xD1, 0xB4, 0xDA, 0x13, 0x4C,
		0x27, 0x8E, 0xB2, 0x4F, 0x57, 0x07, 0xCC, 0xA6, 0xA1, 0x0F, 0x52, 0xD5,
		0x72, 0x16, 0x9D };

/* String of entropy */
uint8_t entropy_data[32] =
{ 0x91, 0x20, 0x1a, 0x18, 0x9b, 0x6d, 0x1a, 0xa7, 0x0e, 0x69, 0x57, 0x6f, 0x36,
		0xb6, 0xaa, 0x88, 0x55, 0xfd, 0x4a, 0x7f, 0x97, 0xe9, 0x72, 0x69, 0xb6,
		0x60, 0x88, 0x78, 0xe1, 0x9c, 0x8c, 0xa5 };

uint8_t output[2048 / 8];
int32_t outputSize = 0;

/* Private function prototypes -----------------------------------------------*/

int32_t RSA_Encrypt(RSApubKey_stt *P_pPubKey, const uint8_t *P_pInputMessage,
		int32_t P_InputSize, uint8_t *P_pOutput);

int32_t RSA_Decrypt(RSAprivKey_stt *P_pPrivKey, const uint8_t *P_pInputMessage,
		uint8_t *P_pOutput, int32_t *P_OutputSize);
TestStatus Buffercmp(const uint8_t *pBuffer, uint8_t *pBuffer1,
		uint16_t BufferLength);

/* Private functions ---------------------------------------------------------*/

/**
 * @brief  Main program
 * @param  None
 * @retval None
 */
void rsa_test(void)
{
	int32_t status = RSA_ERR_GENERIC;
	RSApubKey_stt PubKey_st;
	RSAprivKey_stt PrivKey_st;
	__CRC_CLK_ENABLE();

	// 输出源数据信息
	LCD_Printf("------original data------");
	LCD_Printf(Message);
	/* Testing Encryption and Decryption */
	/* Preparing for Encryption */
	PubKey_st.mExponentSize = sizeof(PublicExponent);
	PubKey_st.mModulusSize = sizeof(Modulus);
	PubKey_st.pmExponent = (uint8_t*) PublicExponent;
	PubKey_st.pmModulus = (uint8_t*) Modulus;

	status = RSA_Encrypt(&PubKey_st, Message, sizeof(Message), output);

	// 输出加密数据信息
	LCD_Printf("------encode data------");
	LCD_Printf(output);

	if (status == RSA_SUCCESS)
	{
		/* Now we will test decryption */
		PrivKey_st.mExponentSize = sizeof(PrivateExponent);
		PrivKey_st.mModulusSize = sizeof(Modulus);
		PrivKey_st.pmExponent = (uint8_t*) PrivateExponent;
		PrivKey_st.pmModulus = (uint8_t*) Modulus;
		status = RSA_Decrypt(&PrivKey_st, output, output, &outputSize);

		if (status == RSA_SUCCESS)
		{
			/* Check expected output */
			if ((Buffercmp(Message, output, sizeof(Message)) == PASSED)
					&& (outputSize == sizeof(Message)))
			{
				/* add application traitment in case of Encryption/Decryption is passed */
				// 输出解密数据信息
				LCD_Printf("------decode data------");
				LCD_Printf(output);
			}
			else
			{
				Error_Handler();
			}
		}
		else
		{
			Error_Handler();
		}
	}
	else
	{
		Error_Handler();
	}
}

/**
 * @brief  RSA Encryption with PKCS#1v1.5
 * @param  P_pPubKey The RSA public key structure, already initialized
 * @param  P_pInputMessage Input Message to be signed
 * @param  P_MessageSize Size of input message
 * @param  P_pOutput Pointer to output buffer
 * @retval error status: can be RSA_SUCCESS if success or one of
 * RSA_ERR_BAD_PARAMETER, RSA_ERR_MESSAGE_TOO_LONG, RSA_ERR_BAD_OPERATION
 */
int32_t RSA_Encrypt(RSApubKey_stt *P_pPubKey, const uint8_t *P_pInputMessage,
		int32_t P_InputSize, uint8_t *P_pOutput)
{
	int32_t status = RNG_SUCCESS;
	RNGstate_stt RNGstate;
	RNGinitInput_stt RNGinit_st;
	RNGinit_st.pmEntropyData = entropy_data;
	RNGinit_st.mEntropyDataSize = sizeof(entropy_data);
	RNGinit_st.mPersDataSize = 0;
	RNGinit_st.mNonceSize = 0;

	status = RNGinit(&RNGinit_st, &RNGstate);
	if (status == RNG_SUCCESS)
	{
		RSAinOut_stt inOut_st;
		membuf_stt mb;

		mb.mSize = sizeof(preallocated_buffer);
		mb.mUsed = 0;
		mb.pmBuf = preallocated_buffer;

		/* Fill the RSAinOut_stt */
		inOut_st.pmInput = P_pInputMessage;
		inOut_st.mInputSize = P_InputSize;
		inOut_st.pmOutput = P_pOutput;

		/* Encrypt the message, this function will write sizeof(modulus) data */
		status = RSA_PKCS1v15_Encrypt(P_pPubKey, &inOut_st, &RNGstate, &mb);
	}
	return (status);
}

/**
 * @brief  RSA Decryption with PKCS#1v1.5
 * @param  P_pPrivKey The RSA private key structure, already initialized
 * @param  P_pInputMessage Input Message to be signed
 * @param  P_MessageSize Size of input message
 * @param  P_pOutput Pointer to output buffer
 * @retval error status: can be RSA_SUCCESS if success or RSA_ERR_GENERIC in case of fail
 */
int32_t RSA_Decrypt(RSAprivKey_stt *P_pPrivKey, const uint8_t *P_pInputMessage,
		uint8_t *P_pOutput, int32_t *P_OutputSize)
{
	int32_t status = RSA_SUCCESS;
	RSAinOut_stt inOut_st;
	membuf_stt mb;

	mb.mSize = sizeof(preallocated_buffer);
	mb.mUsed = 0;
	mb.pmBuf = preallocated_buffer;

	/* Fill the RSAinOut_stt */
	inOut_st.pmInput = P_pInputMessage;
	inOut_st.mInputSize = P_pPrivKey->mModulusSize;
	inOut_st.pmOutput = P_pOutput;

	/* Encrypt the message, this function will write sizeof(modulus) data */
	status = RSA_PKCS1v15_Decrypt(P_pPrivKey, &inOut_st, P_OutputSize, &mb);
	return (status);
}

/**
 * @brief  Compares two buffers.
 * @param  pBuffer, pBuffer1: buffers to be compared.
 * @param  BufferLength: buffer's length
 * @retval PASSED: pBuffer identical to pBuffer1
 *         FAILED: pBuffer differs from pBuffer1
 */
TestStatus Buffercmp(const uint8_t *pBuffer, uint8_t *pBuffer1,
		uint16_t BufferLength)
{
	while (BufferLength--)
	{
		if (*pBuffer != *pBuffer1)
		{
			return FAILED;
		}

		pBuffer++;
		pBuffer1++;
	}

	return PASSED;
}

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

rsa.h:

#ifndef __RSA_H__
#define __RSA_H__

#include "main.h"
#include "crypto.h"

void rsa_test(void);

#endif

注:请将代码中的LCD_Printf替换成自己的输出函数

  1. 在main函数所有初始化之后调用 rsa_test()

  2. 编译运行效果如下:在这里插入图片描述

另附 官方库百度云连接

链接: https://pan.baidu.com/s/15SyTkza0Xtw_fYjeVZ3Dlw 提取码: uetf

猜你喜欢

转载自blog.csdn.net/gyzw_mx/article/details/107552842