Hanoi 汉诺塔——通俗易懂地讲解(c++)

通俗易懂的解释~

游戏规则:

在这里插入图片描述

有A,B,C三根针,将A针上N个从小到大叠放的盘子移动到C针,一次只能移动一个,不重复移动,小盘子必须在大盘子上面。

问题:

总的移动次数是多少?

分析:

首先明确,我们的目标是将A针上所有N个盘子移动至C针。而对于B针,我们可以将之看成一个中转站。

这个问题,顺向思维或者逆向思维道理是相同的,都太麻烦。我们不妨从中间开始思考

||: 规则要求小盘子必须在大盘子之上。试想这个过程中,必然会经历那么一个步骤,即有一大坨N-1个盘子在B针这个中转站,而我们正将最大那个盘子(即第N个盘子)从A针移动至C针。

在这里插入图片描述只有经历“移动最大盘子”这个步骤,余下的事情才有可能实现。而在此之前,我们所要做的事情,就是让“移动最大盘子”这个步骤得以实现。

现在,游戏整个过程以“移动最大盘子”为中央,被分为了两部分。即(前)“将那坨N-1个盘子从A针移动到B针”,(中)“移动最大盘子”,(后)“将坨N-1个盘子从B针移动到C针”。

这是我们意识到,(前)与(后)操作道理是相似的。不去管那个最大盘子,(前)是以C针为中转站,(后)是以A针为中转站。因此两者所需的移动次数应当是相等的。这意味着我们只要计算出其中一者的移动次数,然而乘以2,在加上“移动最大盘子”的那1次,就是这场游戏的总移动次数了。

用数学语言表达,假设(前)“将N-1个盘子从A针移动到B针”所需次数为Hn-1,总移动次数为Hn,那么可以得出的关系就是:Hn=(Hn-1)x 2 + 1.

其实当我们得出这个算式的时候,稍微聪明一点的人已经明白,这就是一个递推公式,可以直接用此公式得出Hn的通解。

但是LZ比较笨,就是不明白,为什么这个公式就可以套用呢?

那么就干脆继续思考吧。

让我们再想象一个情景:最大那个盘子在刚刚从A针被移动到C针,而那坨N-1个盘子还在B针蠢蠢欲动地等待着,即处于(中)->(后)的这个状态。

怎么移动这N-1个盘子呢?

其实这时候,问题已经回到了笔者标示“||:”符号的地方。“||:”是乐谱中的反复记号,而我们要做的,就是重复上面的步骤,但是要将N替换为N-1,因为现在只剩下N-1个盘子需要移动。而中转站则从B变成了A(鉴于这时盘子都在B针)。目标仍然是C针。下一次重复的时候,只剩下N-2个盘子需要移动,中转站又回到B,目标不变仍然是C针。……整个过程中,变化的只是中转站(在A与B之间轮换),以及剩下那些所需要移动的盘子的总数(越来越少)而已。

那么那个大盘子怎么办?不去管它吗??

正解!!

因为你已经把它移到C针,已经完成了这个移动步骤,它不会影响之后的操作。提醒自己牢记游戏规则,大盘子永远在小盘子下面,而你也不需要再重复移动它——“不重复移动”,正是游戏规则的要求!

于是
Hn=Hn-1 x 2 + 1 这个公式,就可以套用、套用、套用……直到H3=7,H2=3,H1=1。

最后,用最懒的数学归纳法证明通项公式
Hn = 2^n - 1 吧!没办法,LZ就是比较懒嘛~

代码实例

//汉诺塔
#include <stdio.h>

void hannuota(int n, char A, char B, char C)
{
    /*
    如果是一个盘子,直接将盘子将a移到c
    否则先将a柱子上面的n-1个盘子借助c移到b,
    然后直接将a柱子上的盘子从A移到c,
    最后将b柱子上的n-1个盘子借助a移到c
    */
    if(1 == n)
    {
        printf("将编号为%d的盘子直接从%c柱子移到%c柱子\n",n, A, C);
    }
    else
    {
        hannuota(n-1, A , C , B);
        printf("将编号为%d的盘子直接从%c柱子移到%c柱子\n",n, A, C);
        hannuota(n-1, B, A, C);
    }
}
int main(void)
{
    char ch1 = 'A';
    char ch2 = 'B';
    char ch3 = 'B';

    int n;

    printf("请输入要移动盘子的个数:");
    scanf("%d", &n);

    hannuota(n, 'A', 'B', 'C');

    return 0;
}

参考自:
YIHE陳

猜你喜欢

转载自blog.csdn.net/weixin_44023658/article/details/105941339