Signal and Systems——Discussion(Two)

1.Assume x ( t ) F T X ( j ω ) x(t) \xleftrightarrow[]{FT}X(j\omega) , discuss the following problems:

  1. Can e j a ω X ( ω ) e^{ja \omega}X(\omega) be real, how?
  2. Can X ( j ω ) X(j\omega) be periodic, how?
  3. Can ω X ( j ω ) d ω \int_{-\infty}^\infty{\omega X(j \omega) d\omega} be zero, how?
  4. Can R e ( X ( j ω ) ) = 0 Re ({{{X(j\omega)}}})=0 or I m ( X ( j ω ) ) = 0 Im(X{(j\omega)})=0 , how?

Solve:
1). 根据题设有:
x ( t ) F T X ( j ω ) (1-1) x(t) \xleftrightarrow[]{FT}X(j\omega) \tag{1-1}
结合FT的时移性质,有:
x ( t + a ) F T e j a ω X ( ω ) = X 1 ( j ω ) (1-2) x(t+a) \xleftrightarrow[]{FT} e^{ja \omega}X(\omega) =X_{1}(j\omega)\tag{1-2}
根据尺度变换特性及共轭对称性,若:
x ( t ) F T X ( j ω ) (1-3) x(t) \xleftrightarrow[]{FT}X(j\omega) \tag{1-3}
则有:
x ( t ) F T X ( j ω ) (1-4) x(-t) \xleftrightarrow[]{FT}X(-j\omega) \tag{1-4}
x ( t ) F T X ( j ω ) (1-5) x^{*}(t) \xleftrightarrow[]{FT}X^{*}(-j\omega) \tag{1-5}
可以看出,若要求 X 1 ( j ω ) X_{1}(j\omega) 为实,则需要有:
X ( j ω ) = X ( j ω ) (1-6) X^{*}(j\omega)=X(j\omega) \tag{1-6}
反映在时域上即为:
x ( t + a ) = x ( t + a ) (1-7) x(t+a)=x^{*}(t+a) \tag{1-7}
x ( t + a ) = x ( t + a ) (1-8) x(t+a)=x(-t+a) \tag{1-8}
即要求 x ( t ) x(t) 为实信号,并且关于 t = a t=a 对称

2).根据对偶性,若:
x ( t ) F T X ( j ω ) (2-1) x(t) \xleftrightarrow[]{FT}X(j\omega) \tag{2-1}
则有:
X ( t ) F T 2 π x ( j ω ) (2-2) X(t) \xleftrightarrow[]{FT}2\pi x(-j\omega) \tag{2-2}
根据所学,周期信号的FT为频域的冲激串,即若 x ( t ) x(t) 为周期信号,则:

x ( t ) F T X ( j ω ) = 2 π k = + a k δ ( ω k ω 0 ) (2-3) x(t) \xleftrightarrow[]{FT}X(j\omega) \tag{2-3}=2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta(\omega- k\omega_{0})

则根据对偶性:
X ( t ) F T 2 π x ( j ω ) (2-4) X(t) \xleftrightarrow[]{FT}2\pi x(-j\omega) \tag{2-4}
x ( j ω ) x(-j\omega) 即为频域上的周期信号。

综上:要求时域上的信号为冲激串形式,才可以保证其FT为周期信号

3). 根据IFT:
x ( t ) = 1 2 π e j ω t X ( j ω ) d ω (3-1) x(t)= \frac{1}{2\pi} \int_{-\infty}^\infty{e^{j\omega t}X(j \omega) d\omega} \tag{3-1}

两边同时对 t t 求导有:
x ( t ) = j ω X ( j ω ) e j ω t d ω (3-2) x^{'}(t)=\int_{-\infty}^\infty{j\omega X(j \omega)e^{j\omega t} d\omega} \tag{3-2}
t = 0 t=0 ,有:
x ( 0 ) = j ω X ( j ω ) d ω (3-3) x^{'}(0)=\int_{-\infty}^\infty{j\omega X(j \omega )d\omega} \tag{3-3}
令其为0,即为 x ( t ) = 0 x^{'}(t)=0

4).根据共轭对称性,若要求 X ( j ω ) X(j\omega) 实部为0,即为要求 X ( j ω ) X(j\omega) 为纯虚数,推导如下:
若:
x ( t ) F T X ( j ω ) (3-4) x(t) \xleftrightarrow[]{FT}X(j\omega) \tag{3-4}
则有:
x ( t ) F T X ( j ω ) (3-5) x(-t) \xleftrightarrow[]{FT}X(-j\omega) \tag{3-5}
x ( t ) F T X ( j ω ) (3-6) x^{*}(t) \xleftrightarrow[]{FT}X^{*}(-j\omega) \tag{3-6}

现在要求: X ( j ω ) = X ( j ω ) (3-7) -X(j\omega)=X^{*}(j\omega) \tag{3-7}
反映在时域上为:
x ( t ) = x ( t ) (3-8) x(t)=x^{*}(t) \tag{3-8}
x ( t ) = x ( t ) (3-9) x(t)=-x(-t) \tag{3-9}
即要求 x ( t ) x(t) 为实奇信号

同理,对于 X ( j w ) X(jw) 虚部为0,有:

扫描二维码关注公众号,回复: 11215022 查看本文章

X ( j ω ) = X ( j ω ) (3-10) X(j\omega)=X^{*}(j\omega) \tag{3-10}
x ( t ) = x ( t ) (3-11) x(t)=x^{*}(t) \tag{3-11}
x ( t ) = x ( t ) (3-12) x(t)=x(-t) \tag{3-12}
即要求 x ( t ) x(t) 为实偶信号。

2
a) A sound signal x ( t ) x(t) is broadcasted in a reverberating room, which can be modeled as a system with the impulse response of h ( t ) = k = 0 + e k T δ ( t k T ) h(t)= \sum_{k=0}^{+\infty} e ^{-kT} \delta(t- kT) . Design a system that can recover x ( t ) x(t) from the reverberated sound signal.

b) When the room impulse response is modeled as h ( t ) = k = 0 K a k δ ( t k T ) h(t)= \sum_{k=0}^{K} a_{k} \delta(t- kT) , can we design a causal system that can recover x ( t ) x(t) from the reverberated sound signal? Specify the reason.

c) Summarize time-domain and frequency-domain methods of finding the inverse system of an LTI system.
Solve:
a)
y ( t ) = x ( t ) h ( t ) (1-1) y(t)=x(t)*h(t)\tag{1-1}
若要加一系统 h 1 ( t ) h_{1}(t) ,使得:
y ( t ) h 1 ( t ) = x ( t ) (1-2) y(t)*h_{1}(t)=x(t) \tag{1-2}
则需:
h ( t ) h 1 ( t ) = δ ( t ) (1-3) h(t)*h_{1}(t)=\delta(t)\tag{1-3}
故有:
h 1 ( t ) = k = 0 + e k T δ ( t + k T ) (1-4) h_{1}(t)= \sum_{k=0}^{+\infty} e^{kT} \delta(t+ kT) \tag{1-4}

b)
同理,若要恢复 x ( t ) x(t) ,则应该将 h 2 ( t ) h_{2}(t) 设计为:
h 1 ( t ) = k = 0 K 1 a k δ ( t + k T ) (1-5) h_{1}(t)= \sum_{k=0}^{K} \frac{1}{a_{k}} \delta(t+ kT) \tag{1-5}

但此时 h 2 ( t ) h_{2}(t) 并不是一个因果系统。所以,不可设计一个因果系统恢复 x ( t ) x(t)

c)
在时域上寻找一个系统 h ( t ) h(t) 的逆系统 h i n v ( t ) h_{inv}(t) ,则寻找依据是:
h ( t ) h i n v ( t ) = δ ( t ) (1-6) h(t)*h_{inv}(t)=\delta(t) \tag{1-6}
而在频域上寻找一个系统 h ( t ) h(t) 的逆系统 h i n v ( t ) h_{inv}(t) ,寻找依据是:
H ( ω ) H i n v ( ω ) = 1 (1-7) H(\omega)H_{inv}(\omega)=1 \tag{1-7}

3.In communication system, single-banded modulation is an effective way to save the spectrum resource. Figure 1 shows the structure of the system that realizes the single-banded modulation.

(a)Please give an example to verify the system can realize single-banded modulation.

(b)Design a system that can recover f ( t ) f(t) from y ( t ) y(t) .
在这里插入图片描述

Slove:
a) 考虑如下信号:
在这里插入图片描述
根据上图关系有:
y 3 ( t ) = c o s ( w 0 t ) f ( t ) (1-1) y_{3}(t)=cos(w_{0}t)f(t) \tag{1-1}
y 1 ( t ) = f ( t ) h ( t ) (1-2) y_{1}(t)=f(t)*h(t) \tag{1-2}
y 2 ( t ) = s i n ( w 0 t ) y 1 ( t ) (1-3) y_{2}(t)=sin(w_{0}t)y_{1}(t) \tag{1-3}
y ( t ) = y 2 ( t ) + y 3 ( t ) (1-4) y(t)=y_{2}(t)+y_{3}(t) \tag{1-4}

求解 Y 3 ( ω ) Y_{3}(\omega) :

根据相乘性质:
Y 3 ( j ω ) = 1 2 π ( π δ ( ω ω 0 ) + π δ ( ω + ω 0 ) ) F ( ω ) (1-5) Y_{3}(j \omega)=\frac{1}{2\pi}(\pi\delta(\omega-\omega_{0})+\pi\delta(\omega+\omega_{0}))*F(\omega)\tag{1-5} 化简后即为:

Y 3 ( j ω ) = 1 2 ( F ( ω ω 0 ) + F ( ω + ω 0 ) ) (1-6) Y_{3}(j \omega)=\frac{1}{2}(F(\omega-\omega_{0})+F(\omega+\omega_{0})) \tag{1-6}
频谱如下:

在这里插入图片描述
求解 Y 1 ( j ω ) Y_{1}(j\omega) :
Y 1 ( j ω ) = H ( j ω ) F ( j ω ) (1-7) Y_{1}(j\omega)=H(j\omega)F(j\omega) \tag{1-7}

考虑如下信号:
s g n ( t ) = 2 u ( t ) 1 (1-8) sgn(t)=2u(t)-1 \tag{1-8}
图像如下:
在这里插入图片描述
已知:
u ( t ) F T 1 j ω + π δ ( ω ) (1-9) u(t) \xleftrightarrow[]{FT}\frac{1}{j\omega}+\pi\delta(\omega) \tag{1-9}

根据FT的线性性质,有:
S ( ω ) = 2 j ω + 2 π δ ( ω ) 2 π δ ( ω ) = 2 j ω (1-10) S(\omega)=\frac{2}{j\omega}+2\pi\delta(\omega) -2\pi\delta(\omega)=\frac{2}{j\omega}\tag{1-10}

根据对偶性:
S ( t ) = 2 j t F T 2 π s g n ( ω ) = 2 π s g n ( ω ) (1-11) S(t)=\frac{2}{jt}\xleftrightarrow[]{FT}2\pi sgn(-\omega)=-2\pi sgn(\omega) \tag{1-11}
化简整理可得:
h ( t ) = 1 π t F T j s g n ( w ) = H ( ω ) (1-12) h(t)=\frac{1}{\pi t}\xleftrightarrow[]{FT}-jsgn(w)=H(\omega) \tag{1-12}
图像如下:
在这里插入图片描述
Y 1 ( ω ) Y_{1}(\omega) 图像如下:
在这里插入图片描述
求解 Y 2 ( ω ) Y_{2}(\omega) :
Y 2 ( ω ) = 1 2 π Y 1 ( ω ) π j ( δ ( ω ω 0 ) δ ( ω + ω 0 ) ) (1-13) Y_{2}(\omega)=\frac{1}{2\pi} Y_{1}(\omega)*\frac{\pi}{j}(\delta(\omega-\omega_{0})-\delta(\omega+\omega_{0})) \tag{1-13}

图像如下:
在这里插入图片描述
求解 Y ( ω ) Y(\omega) :
Y ( ω ) = Y 2 ( ω ) + Y 3 ( ω ) (1-14) Y(\omega)=Y_{2}(\omega)+Y_{3}(\omega) \tag{1-14}

图像如下:
在这里插入图片描述
所以,可以看出,对于输入 x ( t ) x(t) 信号,输出的频谱是输入频谱调制并去除冗余部分的结果

b) 先与一个频谱为 H ( ω ) = δ ( ω ω 0 ) + δ ( ω + ω 0 ) H(\omega)=\delta(\omega-\omega_{0})+\delta(\omega+\omega_{0}) 的系统在频域卷积,得到频谱 Y 4 ( ω ) Y_{4}(\omega) ,图如下:
在这里插入图片描述
将其再经过一个低通滤波器 H 1 ( ω ) H_{1}(\omega) 即可,其中:
在这里插入图片描述

即可恢复出输入信号。
4.The signal in Figure 2a is a band limited signal, which is also called as bandpass signal. Figure 2b is the sampling and reconstruction system, where
h 1 ( t ) = l = + δ ( t l T s ) h_{1}(t)= \sum_{l=-\infty}^{+\infty}\delta(t- lT_{s})

(a)According to the Nyquist sampling theorem, what condition should the sampling angular frequency satisfy?

(b)If the filter H ( ω ) H(\omega) is shown in Figure 2c, ω 1 = ω 2 ω 1 \omega_{1}=\omega_{2}-\omega_{1} If the sampling angular frequency ω s \omega_{s} doesn’t satisfy the Nyquist sampling theorem, can f ( t ) f(t) be covered from y ( t ) y(t) ? If yes, please determine ω s \omega_{s}
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Solve:
a)
ω M = ω 2 (1-1) \omega_{M}=\omega_{2}\tag{1-1}
ω s 2 ω M = 2 ω 2 (1-2) \omega_{s} \geq 2\omega_{M}=2\omega_{2} \tag{1-2}

b)
根据 p ( t ) p(t) 的表达式,可以得到 P ( ω ) P(\omega) 为:
在这里插入图片描述

若采样信号不满足奈奎斯特采样定理,即 ω s 2 ω 2 \omega_{s} \leq 2\omega_{2} ,
其中 ω 2 = 2 ω 1 \omega_{2}=2\omega_{1} ,假设 ω s = ω 2 = 2 ω 1 \omega_{s}=\omega_{2}=2\omega_{1} ,则有 Y 1 ( ω ) Y_{1}(\omega) 图像如下:
在这里插入图片描述
通过上图滤波器后,即得到输入信号,此时 ω s = ω 2 = 2 ω 1 \omega_{s}=\omega_{2}=2\omega_{1}

原创文章 19 获赞 187 访问量 8万+

猜你喜欢

转载自blog.csdn.net/PRINCE2327/article/details/105957508