【2月13日PAT刷题笔记】——DFS回溯输出路径问题

 写DFS函数时,必须先确定需要约束的变量有哪几个。然后每一条路中,这些变量应该怎么样变化,函数中先写退出条件,然后试一试每一种情况(push_back它)然后再pop_back(),这其实就是在回溯,回到当前的状态,再走其他的路

1053 Path of Equal Weight (30分)

Given a non-empty tree with root R, and with weight W​i​​ assigned to each tree node T​i​​. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.

Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 0<N≤100, the number of nodes in a tree, M (<N), the number of non-leaf nodes, and 0<S<2​30​​, the given weight number. The next line contains N positive numbers where W​i​​ (<1000) corresponds to the tree node T​i​​. Then M lines follow, each in the format:

ID K ID[1] ID[2] ... ID[K]

where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.

Output Specification:

For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

Note: sequence {A​1​​,A​2​​,⋯,A​n​​} is said to be greater than sequence {B​1​​,B​2​​,⋯,B​m​​} if there exists 1≤k<min{n,m} such that A​i​​=B​i​​ for i=1,⋯,k, and A​k+1​​>B​k+1​​.

Sample Input:

20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19

Sample Output:

10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2

 以这道题为例

DFS部分:

void dfs(int root,int sum) {
	if(sum==target) {
		if(G[root].size()==0)
			for(int i=0; i<ans.size(); i++) printf("%d%c",ans[i],i==ans.size()-1?'\n':' ');
		return;
	} else if(sum>target) {
		return;
	} else {
		for(int i=0; i<G[root].size(); i++) {
			ans.push_back(weight[G[root][i]]);
			dfs(G[root][i],sum+weight[G[root][i]]);
			ans.pop_back();
		}
	}

}

先写DFS出口!

1155 Heap Paths (30分)

In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))

One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.

Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

Output Specification:

For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.

Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.

Sample Input 1:

8
98 72 86 60 65 12 23 50

Sample Output 1:

98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap

Sample Input 2:

8
8 38 25 58 52 82 70 60

Sample Output 2:

8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap

Sample Input 3:

8
10 28 15 12 34 9 8 56

Sample Output 3:

10 15 8
10 15 9
10 28 34
10 28 12 56
Not Heap

这道题的DFS函数

void DFS(int root) {
	if(root>n) return;
	if(root*2+1>n&&root*2>n) {
		for(int i=0; i<tmp.size(); i++) printf("%d%c",a[tmp[i]],i==tmp.size()-1?'\n':' ');
		return;
	}
	tmp.push_back(root*2+1);
	DFS(root*2+1);
	tmp.pop_back();
	tmp.push_back(root*2);
	DFS(root*2);
	tmp.pop_back();

}

1103 Integer Factorization (30分)

The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n[1]^P + ... n[K]^P

where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 12​2​​+4​2​​+2​2​​+2​2​​+1​2​​, or 11​2​​+6​2​​+2​2​​+2​2​​+2​2​​, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a​1​​,a​2​​,⋯,a​K​​ } is said to be larger than { b​1​​,b​2​​,⋯,b​K​​ } if there exists 1≤L≤K such that a​i​​=b​i​​ for i<L and a​L​​>b​L​​.

If there is no solution, simple output Impossible.

Sample Input 1:

169 5 2

Sample Output 1:

169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:

169 167 3

Sample Output 2:

Impossible

 这道题的dfs函数

void dfs(int tmpsum,int idx,int num,int ksum){
	if(tmpsum==n){
		if(num==k){
			if(ksum>maxsum){
				maxsum=ksum;
				ans=tmp;
			}
		}
		return;
	}
	if(tmpsum>n||num>k||idx>=fac.size()) return;
	tmp.push_back(idx+1);
	dfs(tmpsum+fac[idx],idx,num+1,ksum+idx+1);
	tmp.pop_back();
	dfs(tmpsum,idx-1,num,ksum);
}
原创文章 70 获赞 25 访问量 7161

猜你喜欢

转载自blog.csdn.net/weixin_43727229/article/details/104291419