TreeMap源码分析-java8

1.特征分析

  • TreeMap是基于NavigableMap的红黑树的实现。
  • 默认排序方式:对key升序排序。
  • TreeMap是非线程同步的。
  • 支持浅拷贝,序列化
  • 红黑树put节点时,分有无比较器分开讨论,这主要是从性能角度考虑的。
  • 代理模式:定义在subMap中的方法,将其行为委托给了NavigableMap来实现,代理模式的使用,消除了需要对Iterator方法进行类型检查的丑陋。

2.源码分析

简单介绍

 package sourcecode.analysis;

/**
 * @Author: cxh
 * @CreateTime: 18/3/22 17:46
 * @ProjectName: JavaBaseTest
 */

import java.io.Serializable;
import java.lang.*;
import java.util.*;
import java.util.AbstractSet;
import java.util.Set;
import java.util.function.*;
import java.util.function.BiFunction;
import java.util.function.Consumer;

/**
 *
 * TreeMap是基于NavigableMap的红黑树的实现.
 * 其排序标准为:对key的自然排序.(如果实例化时传入比较器,则对key按比较器排序)
 *
 * 这一实现在以下方法中提供了log(n)的时间复杂度:
 * containsKey(),get(), put() , remove().
 *
 * 注意:由treemap确定的排序,和其它任何有序map一样,无论是否在实例化时提供比较器,只要有序map实现了
 * map接口,则必须和equals保持一致.这是因为map接口就equals操作做出了定义,但是有序map使用了它自己的
 * compareTo方法对所有的key做了排序,因此从有序map的角度,两个key是否equal取决于compareTo方法.
 * 尽管有序map的排序和equals不一致,,但是其如何排序已经给出明确定义.它只是违反了map接口的通用规定.
 *
 * 注意:TreeMap并不是线程同步的.
 * 如果多个线程并发访问TreeMap,且至少有一个线程修改了map的结构,则必须对TreeMap额外进行同步.
 * 同步可以这样写:
 * SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));
 *
 * 支持浅拷贝,序列化
 * 实现了NavigableMap接口
 *
 * @see Map
 * @see HashMap
 * @see Hashtable
 * @see java.lang.Comparable
 * @see Comparator
 * @see Collection
 * @since 1.2
 */  

基础变量

    //对key排序的比较器
    private final Comparator<? super K> comparator;

    //
    private transient Entry<K,V> root;

    //map的entry的个数
    private transient int size = 0;

    /**
     * The number of structural modifications to the tree.
     */
    //treemap结构更改次数
    private transient int modCount = 0;  

构造器方法4个

    //构造函数,默认自然排序
    public TreeMap() {
        comparator = null;
    }

    //构造函数,排序由传入比较器决定
    public TreeMap(Comparator<? super K> comparator) {
        this.comparator = comparator;
    }

    /**
     * 新建一个TreeMap,将参数map中的元素添加到新TreeMap中
     * key遵守自然排序
     */

    public TreeMap(Map<? extends K, ? extends V> m) {
        comparator = null;
        putAll(m);
    }

    /**
     * 构造一个新的TreeMap,并将参数map中元素添加进去
     * key顺序:和参数一致
     */

    public TreeMap(SortedMap<K, ? extends V> m) {
        comparator = m.comparator();
        try {
            buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
        } catch (java.io.IOException cannotHappen) {
        } catch (ClassNotFoundException cannotHappen) {
        }
    }

查询操作

public int size() {
        return size;
    }

    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

    public boolean containsValue(Object value) {
        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
            if (valEquals(value, e.value))
                return true;
        return false;
    }

    public V get(Object key) {
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p.value);
    }

    public Comparator<? super K> comparator() {
        return comparator;
    }

    //返回最小key
    public K firstKey() {
        return key(getFirstEntry());
    }

    //返回最大key
    public K lastKey() {
        return key(getLastEntry());
    }

    public void putAll(Map<? extends K, ? extends V> map) {
        int mapSize = map.size();
        //如果TreeMap没有元素,且参数map为有序map
        if (size==0 && mapSize!=0 && map instanceof SortedMap) {
            //获取比较器
            Comparator<?> c = ((SortedMap<?,?>)map).comparator();
            //如果TreeMap和参数map比较器等价
            if (c == comparator || (c != null && c.equals(comparator))) {
                ++modCount;
                try {
                    buildFromSorted(mapSize, map.entrySet().iterator(),
                            null, null);
                } catch (java.io.IOException cannotHappen) {
                } catch (ClassNotFoundException cannotHappen) {
                }
                return;
            }
        }
        //调用AbstractMap的方法,进行复制
        super.putAll(map);
    }

    //注意:这是一个final类
    final Entry<K,V> getEntry(Object key) {
        //为了提高性能,对有比较器的TreeMap单独处理
        if (comparator != null)
            return getEntryUsingComparator(key);
        if (key == null)
            throw new NullPointerException();
        //没有比较器时
        @SuppressWarnings("unchecked")
        java.lang.Comparable<? super K> k = (java.lang.Comparable<? super K>) key;
        //获取跟节点
        Entry<K,V> p = root;
        //在红黑树中查询
        while (p != null) {
            int cmp = k.compareTo(p.key);
            if (cmp < 0)
                p = p.left;
            else if (cmp > 0)
                p = p.right;
            else
                return p;
        }
        return null;
    }

    /**
     * 使用比较器的getEntry()方法的版本.
     * 为了提高性能,从getEntry中分离出来.(在大多数方法中,这样做并不值得,尤其是那些对比较器
     * 不是很依赖的方法中.但是,本方法中这样做很值得)
     */
    final Entry<K,V> getEntryUsingComparator(Object key) {
        @SuppressWarnings("unchecked")
        K k = (K) key;
        Comparator<? super K> cpr = comparator;
        if (cpr != null) {
            Entry<K,V> p = root;
            while (p != null) {
                int cmp = cpr.compare(k, p.key);
                if (cmp < 0)
                    p = p.left;
                else if (cmp > 0)
                    p = p.right;
                else
                    return p;
            }
        }
        return null;
    }

    //返回指定>=key对应的entry;优先返回等于,其次返回稍大于的entry
    final Entry<K,V> getCeilingEntry(K key) {
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            //key<根节点的值,向左下查找
            if (cmp < 0) {
                if (p.left != null)
                    p = p.left;
                else
                    return p;
            }
            //key>根节点的值,向右下查找
            else if (cmp > 0) {
                if (p.right != null) {
                    p = p.right;
                }
                //如果p无右孩子
                else {
                    //获取p的双亲节点
                    Entry<K,V> parent = p.parent;
                    //获取p节点
                    Entry<K,V> ch = p;
                    //如果双亲节点不为空 && p节点为双亲节点的右孩子
                    while (parent != null && ch == parent.right) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    /**
                     *最终ch指向根节点,parent=null.
                     */
                    //返回null
                    return parent;
                }
            } else
                return p;
        }
        return null;
    }

    /**
     * 获取指定key的entry;
     * 如果不存在,则返回比指定key小的最大key
     */
    //返回<=key的entry.优先返回=;其次返回稍小于
    final Entry<K,V> getFloorEntry(K key) {
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            //如果key>根节点,则右下查找
            if (cmp > 0) {
                if (p.right != null)
                    p = p.right;
                else
                    return p;
            }
            //如果key<跟节点,则左下查找
            else if (cmp < 0) {
                if (p.left != null) {
                    p = p.left;
                } else {
                    Entry<K,V> parent = p.parent;
                    Entry<K,V> ch = p;
                    //最后ch指向跟节点,parent=null
                    while (parent != null && ch == parent.left) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    //返回null
                    return parent;
                }
            } else
                return p;

        }
        return null;
    }

    /**
     * 返回比指定key大的最小key的entry.
     * 如果不存在,则返null
     */
    final Entry<K,V> getHigherEntry(K key) {
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            //如果key<根节点,向左下查找
            if (cmp < 0) {
                if (p.left != null)
                    p = p.left;
                else
                    return p;
            }
            //如果key>根节点,向右下查找
            else {
                if (p.right != null) {
                    p = p.right;
                }
                //如果右孩子为null
                else {
                    Entry<K,V> parent = p.parent;
                    Entry<K,V> ch = p;
                    while (parent != null && ch == parent.right) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    //返回null
                    return parent;
                }
            }
        }
        return null;
    }

    /**
     * 返回比指定key小的最大key的entry.
     * 如果不存在,则返回null
     * 返回对象不可更改
     */
    final Entry<K,V> getLowerEntry(K key) {
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            //如果key>根节点,右下查询
            if (cmp > 0) {
                if (p.right != null)
                    p = p.right;
                else
                    return p;
            }
            //如果key<=根节点,左下查询
            else {
                if (p.left != null) {
                    p = p.left;
                } else {
                    Entry<K,V> parent = p.parent;
                    Entry<K,V> ch = p;
                    while (parent != null && ch == parent.left) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    //返回null
                    return parent;
                }
            }
        }
        return null;
    }

    /**
     * 红黑树的插入
     * 分TreeMap有比较器还是无比较器讨论,这主要是从性能角度考虑的.因为无比较器时,元素按自然排序.
     * @param key
     * @param value
     * @return
     */
    public V put(K key, V value) {
        Entry<K,V> t = root;
        //如果原map为null
        if (t == null) {
            compare(key, key); // 类型检查

            root = new Entry<>(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        int cmp;
        Entry<K,V> parent;

        //将有比较器和无比较器的map分开讨论
        Comparator<? super K> cpr = comparator;

        //如果比较器不为null
        if (cpr != null) {
            do {
                parent = t;
                cmp = cpr.compare(key, t.key);
                //如果key<根节点,则左下查找插入位置
                if (cmp < 0)
                    t = t.left;
                //如果key>根节点,则右下查找插入位置
                else if (cmp > 0)
                    t = t.right;
                //否则,重置根节点的值
                else
                    return t.setValue(value);
            } while (t != null);
        }
        else {
            if (key == null)
                throw new NullPointerException();
            //如果没有比较器,就是自然排序喽
            @SuppressWarnings("unchecked")
            java.lang.Comparable<? super K> k = (java.lang.Comparable<? super K>) key;
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                //如果key<根节点,左下查找插入位置
                if (cmp < 0)
                    t = t.left;
                //如果key>根节点,右下查找插入位置
                else if (cmp > 0)
                    t = t.right;
                //走呃,重置根节点的值
                else
                    return t.setValue(value);
            } while (t != null);
        }
        Entry<K,V> e = new Entry<>(key, value, parent);
        //如果key<红黑树中最小节点parent,则新节点成为parent的左孩子
        if (cmp < 0)
            parent.left = e;
        //如果key>红黑树中最大节点parent,则新节点成为parent的右孩子
        else
            parent.right = e;

        //节点插入完后,需要进行红黑树的调整,调整内容包含:高度+颜色
        fixAfterInsertion(e);
        size++;
        modCount++;
        return null;
    }

    //删除指定key的entry.
    public V remove(Object key) {
        Entry<K,V> p = getEntry(key);
        if (p == null)
            return null;

        V oldValue = p.value;
        //删除方法下面会有详细分析
        deleteEntry(p);
        return oldValue;
    }

    //清空map,且根节点置为null
    public void clear() {
        modCount++;
        size = 0;
        root = null;
    }

    //返回TreeMap实例的浅拷贝,但是key和value本身不做复制.
    public Object clone() {
        TreeMap<?,?> clone;
        try {
            clone = (TreeMap<?,?>) super.clone();//新建一个TreeMap实例
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }

        //变量初始化
        clone.root = null;
        clone.size = 0;
        clone.modCount = 0;
        clone.entrySet = null;
        clone.navigableKeySet = null;
        clone.descendingMap = null;

        //构建TreeMap,clone的初始化
        try {
            clone.buildFromSorted(size, entrySet().iterator(), null, null);
        } catch (java.io.IOException cannotHappen) {
        } catch (ClassNotFoundException cannotHappen) {
        }

        return clone;
    }

NavigableMap API 方法

/**
     * 获取最小key的entry
     * enportEntry():返回指定entry;
     * 如果指定entry为null,则返回null.
     * @since 1.6
     */
    public Map.Entry<K,V> firstEntry() {
        return exportEntry(getFirstEntry());
    }

    /**
     * 获取最大key的entry
     * @since 1.6
     */
    public Map.Entry<K,V> lastEntry() {
        return exportEntry(getLastEntry());
    }

    /**
     * 删除最小key的entry
     * @since 1.6
     */
    public Map.Entry<K,V> pollFirstEntry() {
        Entry<K,V> p = getFirstEntry();
        Map.Entry<K,V> result = exportEntry(p);
        if (p != null)
            deleteEntry(p);
        return result;
    }

    /**
     * 删除最大key的entry
     * @since 1.6
     */
    public Map.Entry<K,V> pollLastEntry() {
        Entry<K,V> p = getLastEntry();
        Map.Entry<K,V> result = exportEntry(p);
        if (p != null)
            deleteEntry(p);
        return result;
    }

    /**
     * 返回比指定key小的最大key的entry.
     * 返回对象为final类型
     * @since 1.6
     */
    public Map.Entry<K,V> lowerEntry(K key) {
        return exportEntry(getLowerEntry(key));
    }

    /**
     * 返回比指定key小的最大key
     * 先返回entry,再返其key;
     * 如果entry为null,则返回null.
     * @since 1.6
     */
    public K lowerKey(K key) {
        return keyOrNull(getLowerEntry(key));
    }

    /**
     * 返回指定<=key的entry,优先返回=,其次返回稍小于
     * @since 1.6
     */
    public Map.Entry<K,V> floorEntry(K key) {
        return exportEntry(getFloorEntry(key));
    }

    /**
     * 返回指定key<=entry的key;优先返回=,其次返回稍小于
     * @since 1.6
     */
    public K floorKey(K key) {
        return keyOrNull(getFloorEntry(key));
    }

    /**
     * 获取>=指定key的entry,优先返回=,其次返回稍大于
     * @since 1.6
     */
    public Map.Entry<K,V> ceilingEntry(K key) {
        return exportEntry(getCeilingEntry(key));
    }

    /**
     * 返回>=指定key的entry对于的key;优先返回=,其次返回稍大于
     * @since 1.6
     */
    public K ceilingKey(K key) {
        return keyOrNull(getCeilingEntry(key));
    }

    /**
     * 获取>key的entry
     * @since 1.6
     */
    public Map.Entry<K,V> higherEntry(K key) {
        return exportEntry(getHigherEntry(key));
    }

    /**
     * 获取>key的entry的key;key为null,返回null.
     * @since 1.6
     */
    public K higherKey(K key) {
        return keyOrNull(getHigherEntry(key));
    }

视图操作

 /**
     * 第一次调用视图方法时,初始化一个entry实例的视图.
     * 因为视图是无状态的,所以只需要创建一个entry实例就可以了,不需要创建更多.
     * 序列化时,这3个域都被置为null
     */
    private transient EntrySet entrySet;
    private transient KeySet<K> navigableKeySet;
    //降序map,注意:NavigableMap的升序操作比降序操作性能更好
    private transient NavigableMap<K,V> descendingMap;

    /**
     * 返回map的key集合;
     * 注意:
     * 1.key集合中元素为升序.
     * 2.set集合的迭代器特性:延迟绑定,快速失效.
     * 3.set集合的分割器:添加属性值Spliterator.SORTED , Spliterator.ORDERED
     * 4.如果treemap的比较器为null,则分割器的迭代器也为null;否则,和TreeMap的比较器相同,
     * 或者对总排序施加和treemap一致的排序.
     *
     * 因为返回的是TreeMap的key集合视图,因此视图的改变对keyset有影响,反之亦然.
     *
     * 返回set支持remove类操作,包括:Iterator.remove,Set.remove,removeAll,retainAll,
     * clear.删除key时,同时删除map中的entry.
     * 返回set不支持add类操作,如:add,addAll操作.为什么不支持add类操作,因为单独添加一个key,没有value
     * 这是没有意义的,所以不支持add类操作很正常.
     */
    public java.util.Set<K> keySet() {
        //调用下面方法,所以二者返回结果性质完全一致
        return navigableKeySet();
    }

    /**
     * 获取key的升序集合
     * @since 1.6
     */
    public NavigableSet<K> navigableKeySet() {
        KeySet<K> nks = navigableKeySet;
        return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this));
    }

    /**
     * 获取key的降序集合
     * @since 1.6
     */
    public NavigableSet<K> descendingKeySet() {
        return descendingMap().navigableKeySet();
    }

    /**
     * 返回TreeMap的value视图集合.
     * value集合的顺序:key的升序排序决定了value的位置
     * 返回Collection的分割器属性:Spliterator.ORDERED
     * 因为返回Collection是map的视图,所以Collection的改变直接改变TreeMap,反之亦然.
     * 返回Collection支持remove类操作,包括:Iterator.remove(),
     * Collection.remove(), removeAll(),retainAll(), clear().
     * 不支持add类操作.原因也是因为没有实际意义.
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            //保证了返回vs不会出现空指针异常问题.是不是这里可以改为Optional类?
            vs = new Values();
            values = vs;
        }
        return vs;
    }

    /**
     * 返回entryset集合内部排列顺序:按key递增.
     *
     * 返回集合的分割器:延迟绑定,快速失效.
     * 分割器额外添加属性:Spliterator.SORTED, Spliterator.ORDERED
     *
     * 支持remove类操作,如:Iterator.remove(),Set.remove(),removeAll(),retainAll(),clear()
     * 不支持add类操作.
     */
    public java.util.Set<Map.Entry<K,V>> entrySet() {
        EntrySet es = entrySet;
        //new的操作保证返回对象非null
        return (es != null) ? es : (entrySet = new EntrySet());
    }

    /**
     * 获取按key降序的map
     * @since 1.6
     */
    public NavigableMap<K, V> descendingMap() {
        NavigableMap<K, V> km = descendingMap;
        return (km != null) ? km :
                (descendingMap = new DescendingSubMap<>(this,
                        true, null, true,
                        true, null, true));
    }

    /**
     * 获取按key升序的map
     * fromInclusive=true,则最小key=fromKey;否则,最小key>fromKey;
     * toInclusive=true,则最大key=toKey;否则,最大key<toKey.
     * @since 1.6
     */
    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
                                    K toKey,   boolean toInclusive) {
        return new AscendingSubMap<>(this,
                false, fromKey, fromInclusive,
                false, toKey,   toInclusive);
    }

    /**
     * 返回子map,元素升序;
     * 如果inClusivve=true,最大key=toKey;否则最大key<toKey.
     * @since 1.6
     */
    public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
        return new AscendingSubMap<>(this,
                true,  null,  true,
                false, toKey, inclusive);
    }

    /**
     * 返回子map,元素升序;
     * 如果inclusive=true,则最小key=fromKey;
     * 否则,最小key>fromKey.
     * @since 1.6
     */
    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
        return new AscendingSubMap<>(this,
                false, fromKey, inclusive,
                true,  null,    true);
    }

    //返回子map,包含下限fromKey,不包含上限toKey
    public SortedMap<K,V> subMap(K fromKey, K toKey) {
        return subMap(fromKey, true, toKey, false);
    }

    //返回不包含上限toKey的子map
    public SortedMap<K,V> headMap(K toKey) {
        return headMap(toKey, false);
    }

    //返回包含下限fromKey的map
    public SortedMap<K,V> tailMap(K fromKey) {
        return tailMap(fromKey, true);
    }

    //利用key和oldValue找到entry,并替换value
    @Override
    public boolean replace(K key, V oldValue, V newValue) {
        Entry<K,V> p = getEntry(key);
        if (p!=null && Objects.equals(oldValue, p.value)) {
            p.value = newValue;
            return true;
        }
        return false;
    }

    //使用指定value替换key对应的value值.
    @Override
    public V replace(K key, V value) {
        Entry<K,V> p = getEntry(key);
        if (p!=null) {
            V oldValue = p.value;
            p.value = value;
            return oldValue;
        }
        return null;
    }

    //内部迭代方法forEach
    @Override
    public void forEach(java.util.function.BiConsumer<? super K, ? super V> action) {
        Objects.requireNonNull(action);
        int expectedModCount = modCount;
        for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
            action.accept(e.key, e.value);

            if (expectedModCount != modCount) {
                throw new ConcurrentModificationException();
            }
        }
    }

    //java8新方法,在对值的更改上,比原java中replace更具灵活性
    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Objects.requireNonNull(function);
        int expectedModCount = modCount;

        for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
            e.value = function.apply(e.key, e.value);

            if (expectedModCount != modCount) {
                throw new ConcurrentModificationException();
            }
        }
    }  

视图类支持方法

    //TreeMap的values类
    class Values extends AbstractCollection<V> {
        public Iterator<V> iterator() {
            return new ValueIterator(getFirstEntry());
        }

        public int size() {
            return TreeMap.this.size();
        }

        public boolean contains(Object o) {
            return TreeMap.this.containsValue(o);
        }

        public boolean remove(Object o) {
            for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
                if (valEquals(e.getValue(), o)) {
                    deleteEntry(e);
                    return true;
                }
            }
            return false;
        }

        public void clear() {
            TreeMap.this.clear();
        }

        public Spliterator<V> spliterator() {
            return new ValueSpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
        }
    }

    //TreeMap的EntrySet
    class EntrySet extends java.util.AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator(getFirstEntry());
        }

        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
            Object value = entry.getValue();
            Entry<K,V> p = getEntry(entry.getKey());
            return p != null && valEquals(p.getValue(), value);
        }

        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
            Object value = entry.getValue();
            Entry<K,V> p = getEntry(entry.getKey());
            if (p != null && valEquals(p.getValue(), value)) {
                deleteEntry(p);
                return true;
            }
            return false;
        }

        public int size() {
            //调用外围类的size()方法
            return TreeMap.this.size();
        }

        public void clear() {
            //调用外围类的clear()方法
            TreeMap.this.clear();
        }

        public Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
        }
    }

    /**
     * 和Values,EntrySet不同,KeySet是一个static final类,
     * 迭代器方法主要定义在SubMap中,为了可以使用SubMap方法,将其行为委托给了NavigableMap,
     * 代理的使用,消除了需要对Iterator方法进行类型检查的丑陋.---代理模式?
     */

    //key升序迭代器
    Iterator<K> keyIterator() {
        return new KeyIterator(getFirstEntry());
    }

    //key降序迭代器
    Iterator<K> descendingKeyIterator() {
        return new DescendingKeyIterator(getLastEntry());
    }

    //KeySet类,静态final类型
    static final class KeySet<E> extends java.util.AbstractSet<E> implements NavigableSet<E> {
        private final NavigableMap<E, ?> m;
        KeySet(NavigableMap<E,?> map) { m = map; }

        //key升序迭代器
        public Iterator<E> iterator() {
            if (m instanceof TreeMap)
                return ((TreeMap<E,?>)m).keyIterator();
            else
                return ((TreeMap.NavigableSubMap<E,?>)m).keyIterator();
        }
        //key降序迭代器
        public Iterator<E> descendingIterator() {
            if (m instanceof TreeMap)
                return ((TreeMap<E,?>)m).descendingKeyIterator();
            else
                return ((TreeMap.NavigableSubMap<E,?>)m).descendingKeyIterator();
        }

        public int size() { return m.size(); }
        public boolean isEmpty() { return m.isEmpty(); }
        public boolean contains(Object o) { return m.containsKey(o); }
        public void clear() { m.clear(); }
        public E lower(E e) { return m.lowerKey(e); }
        public E floor(E e) { return m.floorKey(e); }
        public E ceiling(E e) { return m.ceilingKey(e); }
        public E higher(E e) { return m.higherKey(e); }
        public E first() { return m.firstKey(); }
        public E last() { return m.lastKey(); }
        public Comparator<? super E> comparator() { return m.comparator(); }
        public E pollFirst() {
            Map.Entry<E,?> e = m.pollFirstEntry();
            return (e == null) ? null : e.getKey();
        }
        public E pollLast() {
            Map.Entry<E,?> e = m.pollLastEntry();
            return (e == null) ? null : e.getKey();
        }
        public boolean remove(Object o) {
            int oldSize = size();
            m.remove(o);
            return size() != oldSize;
        }
        public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
                                      E toElement,   boolean toInclusive) {
            return new KeySet<>(m.subMap(fromElement, fromInclusive,
                    toElement,   toInclusive));
        }
        public NavigableSet<E> headSet(E toElement, boolean inclusive) {
            return new KeySet<>(m.headMap(toElement, inclusive));
        }
        public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
            return new KeySet<>(m.tailMap(fromElement, inclusive));
        }
        public SortedSet<E> subSet(E fromElement, E toElement) {
            return subSet(fromElement, true, toElement, false);
        }
        public SortedSet<E> headSet(E toElement) {
            return headSet(toElement, false);
        }
        public SortedSet<E> tailSet(E fromElement) {
            return tailSet(fromElement, true);
        }
        public NavigableSet<E> descendingSet() {
            return new KeySet<>(m.descendingMap());
        }

        public Spliterator<E> spliterator() {
            return keySpliteratorFor(m);
        }
    }

    /**TreeMap相关迭代器的辅助类
     * 相关迭代器包括:
     * EntryIterator
     * ValueIterator
     * KeyIterator
     * DescendingKeyIterator
     */
    abstract class PrivateEntryIterator<T> implements Iterator<T> {
        Entry<K,V> next;
        Entry<K,V> lastReturned;
        int expectedModCount;

        PrivateEntryIterator(Entry<K,V> first) {
            expectedModCount = modCount;
            lastReturned = null;
            next = first;
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Entry<K,V> nextEntry() {
            Entry<K,V> e = next;
            if (e == null)
                throw new NoSuchElementException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            next = successor(e);
            lastReturned = e;
            return e;
        }

        final Entry<K,V> prevEntry() {
            Entry<K,V> e = next;
            if (e == null)
                throw new NoSuchElementException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            next = predecessor(e);
            lastReturned = e;
            return e;
        }

        public void remove() {
            if (lastReturned == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            // deleted entries are replaced by their successors
            if (lastReturned.left != null && lastReturned.right != null)
                next = lastReturned;
            deleteEntry(lastReturned);
            expectedModCount = modCount;
            lastReturned = null;
        }
    }

    /*------以下4个final类都是对上面抽象类PrivateEntryIterator的扩展---*/

    //entry迭代器
    final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
        EntryIterator(Entry<K,V> first) {
            super(first);
        }
        public Map.Entry<K,V> next() {
            return nextEntry();
        }
    }

    //value迭代器
    final class ValueIterator extends PrivateEntryIterator<V> {
        ValueIterator(Entry<K,V> first) {
            super(first);
        }
        public V next() {
            return nextEntry().value;
        }
    }

    //key迭代器
    final class KeyIterator extends PrivateEntryIterator<K> {
        KeyIterator(Entry<K,V> first) {
            super(first);
        }
        public K next() {
            return nextEntry().key;
        }
    }

    //key降序迭代器
    final class DescendingKeyIterator extends PrivateEntryIterator<K> {
        DescendingKeyIterator(Entry<K,V> first) {
            super(first);
        }
        public K next() {
            return prevEntry().key;
        }
        public void remove() {
            if (lastReturned == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            deleteEntry(lastReturned);
            lastReturned = null;
            expectedModCount = modCount;
        }
    }

小的工具类

    //分有比较器和无比较器,进行比较
    @SuppressWarnings("unchecked")
    final int compare(Object k1, Object k2) {
        return comparator==null ? ((java.lang.Comparable<? super K>)k1).compareTo((K)k2)
                : comparator.compare((K)k1, (K)k2);
    }

    //测试两个值是否相等。与o1.equals(o2)的区别仅在于它正确地处理了o1为null的情况.
    static final boolean valEquals(Object o1, Object o2) {
        return (o1==null ? o2==null : o1.equals(o2));
    }

    /**
     * 新建一个entry,映射同参数e,并返回;
     * 如果参数e为null,则返回null.
     */
    static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
        return (e == null) ? null :
                new AbstractMap.SimpleImmutableEntry<>(e);
    }

    /**
     * key!=null,返回key;
     * key==null,返回null;
     */
    static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
        return (e == null) ? null : e.key;
    }

    //返回指定entry的key
    static <K> K key(Entry<K,?> e) {
        if (e==null)
            throw new NoSuchElementException();
        return e.key;
    }

SubMaps的操作

 //虚拟值用作无界SubMapIterator的不可匹配的隔离key
    private static final Object UNBOUNDED = new Object();

    //升序的subMap,可序列化
    abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V>
            implements NavigableMap<K,V>, java.io.Serializable {
        //序列号
        private static final long serialVersionUID = -2102997345730753016L;
        //底层map
        final TreeMap<K,V> m;

        /**
         * key的起始点和终点用三元组的形式进行确定:
         * 起始点决定因素:(fromStart, lo,loInclusive)
         * 终点决定因素:(toEnd, hi, hiInclusive)
         * 为true时,包含边界点;
         * 否则,不包含.
         */
        final K lo, hi;
        final boolean fromStart, toEnd;
        final boolean loInclusive, hiInclusive;

        NavigableSubMap(TreeMap<K,V> m,
                        boolean fromStart, K lo, boolean loInclusive,
                        boolean toEnd,     K hi, boolean hiInclusive) {
            if (!fromStart && !toEnd) {
                if (m.compare(lo, hi) > 0)
                    throw new IllegalArgumentException("fromKey > toKey");
            } else {
                if (!fromStart) // type check
                    m.compare(lo, lo);
                if (!toEnd)
                    m.compare(hi, hi);
            }

            this.m = m;
            this.fromStart = fromStart;
            this.lo = lo;
            this.loInclusive = loInclusive;
            this.toEnd = toEnd;
            this.hi = hi;
            this.hiInclusive = hiInclusive;
        }

        /*-----内部工具-----*/

        //key是否低于下界
        final boolean tooLow(Object key) {
            //如果最小值不是subMap的最小值
            if (!fromStart) {
                //将key和lo做比较
                int c = m.compare(key, lo);
                //如果key<lo or (key=lo 且 不包含终点),说明参数key不在sumMap的keys范围内,返回true.
                if (c < 0 || (c == 0 && !loInclusive))
                    return true;
            }
            //如果最小值为subMap的最小值,则key肯定不会低于下界
            return false;
        }

        //key是否超出上界
        final boolean tooHigh(Object key) {
            //如果最大值不是subMap的最大值
            if (!toEnd) {
                //key和高位key做比较
                int c = m.compare(key, hi);
                //如果key>终点值 or (key=终点值 且 keyset不包含终点值)
                if (c > 0 || (c == 0 && !hiInclusive))
                    return true;
            }
            //如果最大值是subMap的最大值,则key肯定是合法的,不会超出key的界限
            return false;
        }

        //如果key既未超出上界,也未低于下界,则返回结果为true,(lo,hi)
        final boolean inRange(Object key) {
            return !tooLow(key) && !tooHigh(key);
        }

        //key是否在闭区间范围内,闭区间为[lo,hi]
        final boolean inClosedRange(Object key) {
            return (fromStart || m.compare(key, lo) >= 0)
                    && (toEnd || m.compare(hi, key) >= 0);
        }

        /**
         * inclusive=true,用于判定key是否在开区间范围内;
         * inclusive=false,用于判定key是否在闭区间范围内.
         */
        final boolean inRange(Object key, boolean inclusive) {
            return inclusive ? inRange(key) : inClosedRange(key);
        }

        /*
         * 关系操作的一些绝对性方法.
         * 使用类似"sub..."这样名字的方法时,是为了获取降序map.
         */

        //获取绝对最小entry
        final TreeMap.Entry<K,V> absLowest() {
            TreeMap.Entry<K,V> e =
                    (fromStart ?  m.getFirstEntry() :
                            (loInclusive ? m.getCeilingEntry(lo) :
                                    m.getHigherEntry(lo)));
            return (e == null || tooHigh(e.key)) ? null : e;
        }

        //获取绝对最大entry
        final TreeMap.Entry<K,V> absHighest() {
            TreeMap.Entry<K,V> e =
                    (toEnd ?  m.getLastEntry() :
                            (hiInclusive ?  m.getFloorEntry(hi) :
                                    m.getLowerEntry(hi)));
            return (e == null || tooLow(e.key)) ? null : e;
        }

        //获取>=key的绝对最小entry,优先返回=,其次返回<
        final TreeMap.Entry<K,V> absCeiling(K key) {
            //如果key<subMap的最小界,则返回subMap的最小entry
            if (tooLow(key))
                return absLowest();
            //获取<=key的entry
            TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
            return (e == null || tooHigh(e.key)) ? null : e;
        }

        //获取>key的entry
        final TreeMap.Entry<K,V> absHigher(K key) {
            if (tooLow(key))
                return absLowest();
            TreeMap.Entry<K,V> e = m.getHigherEntry(key);
            return (e == null || tooHigh(e.key)) ? null : e;
        }

        //返回<=key的entry,优先 返回=,其次<
        final TreeMap.Entry<K,V> absFloor(K key) {
            if (tooHigh(key))
                return absHighest();
            TreeMap.Entry<K,V> e = m.getFloorEntry(key);
            return (e == null || tooLow(e.key)) ? null : e;
        }

        //获取<key的entry
        final TreeMap.Entry<K,V> absLower(K key) {
            if (tooHigh(key))
                return absHighest();
            TreeMap.Entry<K,V> e = m.getLowerEntry(key);
            return (e == null || tooLow(e.key)) ? null : e;
        }

        /** Returns the absolute high fence for ascending traversal */
        //升序遍历中,返回绝对最大值
        final TreeMap.Entry<K,V> absHighFence() {
            /**if subMap上界为map的最大key,返回null,就是没有绝对最大key
             * else if,如果subMap包含上限值,则获取比subMap上限大的entry
             * else ,获取key>=hi的entry,优先返回=
             * **/
            return (toEnd ? null : (hiInclusive ?
                    m.getHigherEntry(hi) :
                    m.getCeilingEntry(hi)));
        }

        //降序遍历中,返回绝对最小值
        final TreeMap.Entry<K,V> absLowFence() {
            return (fromStart ? null : (loInclusive ?
                    m.getLowerEntry(lo) :
                    m.getFloorEntry(lo)));
        }

        //抽象方法,用于降序or升序类
        //这些方法会被具体实现到特定的版本中.
        abstract TreeMap.Entry<K,V> subLowest();
        abstract TreeMap.Entry<K,V> subHighest();
        abstract TreeMap.Entry<K,V> subCeiling(K key);
        abstract TreeMap.Entry<K,V> subHigher(K key);
        abstract TreeMap.Entry<K,V> subFloor(K key);
        abstract TreeMap.Entry<K,V> subLower(K key);

        /** Returns ascending iterator from the perspective of this submap */
        abstract Iterator<K> keyIterator();

        abstract Spliterator<K> keySpliterator();

        /** Returns descending iterator from the perspective of this submap */
        abstract Iterator<K> descendingKeyIterator();

        /*-------public methods-----*/

        public boolean isEmpty() {
            return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
        }

        public int size() {
            return (fromStart && toEnd) ? m.size() : entrySet().size();
        }

        public final boolean containsKey(Object key) {
            return inRange(key) && m.containsKey(key);
        }

        public final V put(K key, V value) {
            if (!inRange(key))
                throw new IllegalArgumentException("key out of range");
            return m.put(key, value);
        }

        public final V get(Object key) {
            return !inRange(key) ? null :  m.get(key);
        }

        public final V remove(Object key) {
            return !inRange(key) ? null : m.remove(key);
        }

        public final Map.Entry<K,V> ceilingEntry(K key) {
            return exportEntry(subCeiling(key));
        }

        public final K ceilingKey(K key) {
            return keyOrNull(subCeiling(key));
        }

        public final Map.Entry<K,V> higherEntry(K key) {
            return exportEntry(subHigher(key));
        }

        public final K higherKey(K key) {
            return keyOrNull(subHigher(key));
        }

        public final Map.Entry<K,V> floorEntry(K key) {
            return exportEntry(subFloor(key));
        }

        public final K floorKey(K key) {
            return keyOrNull(subFloor(key));
        }

        public final Map.Entry<K,V> lowerEntry(K key) {
            return exportEntry(subLower(key));
        }

        public final K lowerKey(K key) {
            return keyOrNull(subLower(key));
        }

        public final K firstKey() {
            return key(subLowest());
        }

        public final K lastKey() {
            return key(subHighest());
        }

        public final Map.Entry<K,V> firstEntry() {
            return exportEntry(subLowest());
        }

        public final Map.Entry<K,V> lastEntry() {
            return exportEntry(subHighest());
        }

        public final Map.Entry<K,V> pollFirstEntry() {
            TreeMap.Entry<K,V> e = subLowest();
            Map.Entry<K,V> result = exportEntry(e);
            if (e != null)
                m.deleteEntry(e);
            return result;
        }

        public final Map.Entry<K,V> pollLastEntry() {
            TreeMap.Entry<K,V> e = subHighest();
            Map.Entry<K,V> result = exportEntry(e);
            if (e != null)
                m.deleteEntry(e);
            return result;
        }

        // Views
        transient NavigableMap<K,V> descendingMapView;
        transient EntrySetView entrySetView;
        transient KeySet<K> navigableKeySetView;

        public final NavigableSet<K> navigableKeySet() {
            KeySet<K> nksv = navigableKeySetView;
            return (nksv != null) ? nksv :
                    (navigableKeySetView = new TreeMap.KeySet<>(this));
        }

        public final java.util.Set<K> keySet() {
            return navigableKeySet();
        }

        public NavigableSet<K> descendingKeySet() {
            return descendingMap().navigableKeySet();
        }

        public final SortedMap<K,V> subMap(K fromKey, K toKey) {
            return subMap(fromKey, true, toKey, false);
        }

        public final SortedMap<K,V> headMap(K toKey) {
            return headMap(toKey, false);
        }

        public final SortedMap<K,V> tailMap(K fromKey) {
            return tailMap(fromKey, true);
        }

        /*------视图类-----*/

        abstract class EntrySetView extends AbstractSet<Entry<K,V>> {
            private transient int size = -1, sizeModCount;

            public int size() {
                if (fromStart && toEnd)
                    return m.size();
                if (size == -1 || sizeModCount != m.modCount) {
                    sizeModCount = m.modCount;
                    size = 0;
                    Iterator<?> i = iterator();
                    while (i.hasNext()) {
                        size++;
                        i.next();
                    }
                }
                return size;
            }

            public boolean isEmpty() {
                TreeMap.Entry<K,V> n = absLowest();
                return n == null || tooHigh(n.key);
            }

            public boolean contains(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
                Object key = entry.getKey();
                if (!inRange(key))
                    return false;
                TreeMap.Entry<?,?> node = m.getEntry(key);
                return node != null &&
                        valEquals(node.getValue(), entry.getValue());
            }

            public boolean remove(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
                Object key = entry.getKey();
                if (!inRange(key))
                    return false;
                TreeMap.Entry<K,V> node = m.getEntry(key);
                if (node!=null && valEquals(node.getValue(),
                        entry.getValue())) {
                    m.deleteEntry(node);
                    return true;
                }
                return false;
            }
        }

        /**
         * SubMaps的迭代器
         */
        abstract class SubMapIterator<T> implements Iterator<T> {
            TreeMap.Entry<K,V> lastReturned;
            TreeMap.Entry<K,V> next;
            final Object fenceKey;
            int expectedModCount;

            SubMapIterator(TreeMap.Entry<K,V> first,
                           TreeMap.Entry<K,V> fence) {
                expectedModCount = m.modCount;
                lastReturned = null;
                next = first;
                fenceKey = fence == null ? UNBOUNDED : fence.key;
            }

            public final boolean hasNext() {
                return next != null && next.key != fenceKey;
            }

            final TreeMap.Entry<K,V> nextEntry() {
                TreeMap.Entry<K,V> e = next;
                if (e == null || e.key == fenceKey)
                    throw new NoSuchElementException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                next = successor(e);
                lastReturned = e;
                return e;
            }

            final TreeMap.Entry<K,V> prevEntry() {
                TreeMap.Entry<K,V> e = next;
                if (e == null || e.key == fenceKey)
                    throw new NoSuchElementException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                next = predecessor(e);
                lastReturned = e;
                return e;
            }

            final void removeAscending() {
                if (lastReturned == null)
                    throw new IllegalStateException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                // deleted entries are replaced by their successors
                if (lastReturned.left != null && lastReturned.right != null)
                    next = lastReturned;
                m.deleteEntry(lastReturned);
                lastReturned = null;
                expectedModCount = m.modCount;
            }

            final void removeDescending() {
                if (lastReturned == null)
                    throw new IllegalStateException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                m.deleteEntry(lastReturned);
                lastReturned = null;
                expectedModCount = m.modCount;
            }

        }

        //entry迭代器,扩展上面的抽象类SubMapIterator
        final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
            SubMapEntryIterator(TreeMap.Entry<K,V> first,
                                TreeMap.Entry<K,V> fence) {
                super(first, fence);
            }
            public Map.Entry<K,V> next() {
                return nextEntry();
            }
            public void remove() {
                removeAscending();
            }
        }

        //降序subMap迭代器
        final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
            DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
                                          TreeMap.Entry<K,V> fence) {
                super(last, fence);
            }

            public Map.Entry<K,V> next() {
                return prevEntry();
            }
            public void remove() {
                removeDescending();
            }
        }

        // Spliterator的最简单实现,作为KeySpliterator备份
        //对key的迭代器
        final class SubMapKeyIterator extends SubMapIterator<K>
                implements Spliterator<K> {
            SubMapKeyIterator(TreeMap.Entry<K,V> first,
                              TreeMap.Entry<K,V> fence) {
                super(first, fence);
            }
            public K next() {
                return nextEntry().key;
            }
            public void remove() {
                removeAscending();
            }
            public Spliterator<K> trySplit() {
                return null;
            }
            public void forEachRemaining(java.util.function.Consumer<? super K> action) {
                while (hasNext())
                    action.accept(next());
            }
            public boolean tryAdvance(java.util.function.Consumer<? super K> action) {
                if (hasNext()) {
                    action.accept(next());
                    return true;
                }
                return false;
            }
            public long estimateSize() {
                return Long.MAX_VALUE;
            }
            public int characteristics() {
                return Spliterator.DISTINCT | Spliterator.ORDERED |
                        Spliterator.SORTED;
            }
            public final Comparator<? super K>  getComparator() {
                return NavigableSubMap.this.comparator();
            }
        }

        //降序map的key迭代器
        final class DescendingSubMapKeyIterator extends SubMapIterator<K>
                implements Spliterator<K> {
            DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
                                        TreeMap.Entry<K,V> fence) {
                super(last, fence);
            }
            public K next() {
                return prevEntry().key;
            }
            public void remove() {
                removeDescending();
            }
            public Spliterator<K> trySplit() {
                return null;
            }
            public void forEachRemaining(java.util.function.Consumer<? super K> action) {
                while (hasNext())
                    action.accept(next());
            }
            public boolean tryAdvance(java.util.function.Consumer<? super K> action) {
                if (hasNext()) {
                    action.accept(next());
                    return true;
                }
                return false;
            }
            public long estimateSize() {
                return Long.MAX_VALUE;
            }
            public int characteristics() {
                return Spliterator.DISTINCT | Spliterator.ORDERED;
            }
        }
    }

升序subMap

//升序subMap
    static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
        private static final long serialVersionUID = 912986545866124060L;

        AscendingSubMap(TreeMap<K,V> m,
                        boolean fromStart, K lo, boolean loInclusive,
                        boolean toEnd,     K hi, boolean hiInclusive) {
            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
        }

        public Comparator<? super K> comparator() {
            return m.comparator();
        }

        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
                                        K toKey,   boolean toInclusive) {
            if (!inRange(fromKey, fromInclusive))
                throw new IllegalArgumentException("fromKey out of range");
            if (!inRange(toKey, toInclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new AscendingSubMap<>(m,
                    false, fromKey, fromInclusive,
                    false, toKey,   toInclusive);
        }

        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
            if (!inRange(toKey, inclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new AscendingSubMap<>(m,
                    fromStart, lo,    loInclusive,
                    false,     toKey, inclusive);
        }

        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
            if (!inRange(fromKey, inclusive))
                throw new IllegalArgumentException("fromKey out of range");
            return new AscendingSubMap<>(m,
                    false, fromKey, inclusive,
                    toEnd, hi,      hiInclusive);
        }

        public NavigableMap<K,V> descendingMap() {
            NavigableMap<K,V> mv = descendingMapView;
            return (mv != null) ? mv :
                    (descendingMapView =
                            new DescendingSubMap<>(m,
                                    fromStart, lo, loInclusive,
                                    toEnd,     hi, hiInclusive));
        }

        Iterator<K> keyIterator() {
            return new java.util.TreeMap.NavigableSubMap.SubMapKeyIterator(absLowest(), absHighFence());
        }

        Spliterator<K> keySpliterator() {
            return new java.util.TreeMap.NavigableSubMap.SubMapKeyIterator(absLowest(), absHighFence());
        }

        //升序subMap中key的降序迭代器
        Iterator<K> descendingKeyIterator() {
            return new java.util.TreeMap.NavigableSubMap.DescendingSubMapKeyIterator(absHighest(), absLowFence());
        }

        final class AscendingEntrySetView extends java.util.TreeMap.NavigableSubMap.EntrySetView {
            public Iterator<Map.Entry<K,V>> iterator() {
                return new java.util.TreeMap.NavigableSubMap.SubMapEntryIterator(absLowest(), absHighFence());
            }
        }

        public java.util.Set<Entry<K,V>> entrySet() {
            java.util.TreeMap.NavigableSubMap.EntrySetView es = entrySetView;
            return (es != null) ? es : (entrySetView = new AscendingEntrySetView());
        }

        TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
        TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
        TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
        TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
        TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
        TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
    }

降序subMap

    //降序subMap
    static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
        private static final long serialVersionUID = 912986545866120460L;
        DescendingSubMap(TreeMap<K,V> m,
                         boolean fromStart, K lo, boolean loInclusive,
                         boolean toEnd,     K hi, boolean hiInclusive) {
            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
        }

        private final Comparator<? super K> reverseComparator =
                Collections.reverseOrder(m.comparator);

        public Comparator<? super K> comparator() {
            return reverseComparator;
        }

        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
                                        K toKey,   boolean toInclusive) {
            if (!inRange(fromKey, fromInclusive))
                throw new IllegalArgumentException("fromKey out of range");
            if (!inRange(toKey, toInclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new DescendingSubMap<>(m,
                    false, toKey,   toInclusive,
                    false, fromKey, fromInclusive);
        }

        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
            if (!inRange(toKey, inclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new DescendingSubMap<>(m,
                    false, toKey, inclusive,
                    toEnd, hi,    hiInclusive);
        }

        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
            if (!inRange(fromKey, inclusive))
                throw new IllegalArgumentException("fromKey out of range");
            return new DescendingSubMap<>(m,
                    fromStart, lo, loInclusive,
                    false, fromKey, inclusive);
        }

        public NavigableMap<K,V> descendingMap() {
            NavigableMap<K,V> mv = descendingMapView;
            return (mv != null) ? mv :
                    (descendingMapView =
                            new AscendingSubMap<>(m,
                                    fromStart, lo, loInclusive,
                                    toEnd,     hi, hiInclusive));
        }

        Iterator<K> keyIterator() {
            return new java.util.TreeMap.NavigableSubMap.DescendingSubMapKeyIterator(absHighest(), absLowFence());
        }

        Spliterator<K> keySpliterator() {
            return new java.util.TreeMap.NavigableSubMap.DescendingSubMapKeyIterator(absHighest(), absLowFence());
        }

        Iterator<K> descendingKeyIterator() {
            return new java.util.TreeMap.NavigableSubMap.SubMapKeyIterator(absLowest(), absHighFence());
        }

        final class DescendingEntrySetView extends java.util.TreeMap.NavigableSubMap.EntrySetView {
            public Iterator<Map.Entry<K,V>> iterator() {
                return new java.util.TreeMap.NavigableSubMap.DescendingSubMapEntryIterator(absHighest(), absLowFence());
            }
        }

        public java.util.Set<Entry<K,V>> entrySet() {
            java.util.TreeMap.NavigableSubMap.EntrySetView es = entrySetView;
            return (es != null) ? es : (entrySetView = new DescendingEntrySetView());
        }

        TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
        TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
        TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
        TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
        TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
        TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
    }

序列化兼容性

 /**
     * 该类仅用于与不支持NavigableMap的以前版本的TreeMap的序列化兼容性.
     * 它将旧版本的SubMap转换为新版本的AscendingSubMap。这个类从来没有使用过。
     */
    private class SubMap extends AbstractMap<K,V>
            implements SortedMap<K,V>, java.io.Serializable {
        private static final long serialVersionUID = -6520786458950516097L;
        private boolean fromStart = false, toEnd = false;
        private K fromKey, toKey;
        private Object readResolve() {
            return new AscendingSubMap<>(TreeMap.this,
                    fromStart, fromKey, true,
                    toEnd, toKey, false);
        }
        public Set<Entry<K,V>> entrySet() { throw new InternalError(); }
        public K lastKey() { throw new InternalError(); }
        public K firstKey() { throw new InternalError(); }
        public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
        public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
        public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
        public Comparator<? super K> comparator() { throw new InternalError(); }
    }

红黑树机制

private static final boolean RED   = false;
    private static final boolean BLACK = true;

    /**
     * Node in the Tree.  Doubles as a means to pass key-value pairs back to
     * user (see Map.Entry).
     */

    static final class Entry<K,V> implements Map.Entry<K,V> {
        K key;
        V value;
        Entry<K,V> left;
        Entry<K,V> right;
        Entry<K,V> parent;
        boolean color = BLACK;//true为黑色;false为红色;

        //新建红黑树节点,有双亲,无孩子,颜色为黑色
        Entry(K key, V value, Entry<K,V> parent) {
            this.key = key;
            this.value = value;
            this.parent = parent;
        }

        public K getKey() {
            return key;
        }


        public V getValue() {
            return value;
        }

        public V setValue(V value) {
            V oldValue = this.value;
            this.value = value;
            return oldValue;
        }

        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;

            return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
        }

        public int hashCode() {
            int keyHash = (key==null ? 0 : key.hashCode());
            int valueHash = (value==null ? 0 : value.hashCode());
            return keyHash ^ valueHash;
        }

        public String toString() {
            return key + "=" + value;
        }
    }

    //返回第一个entry,左下遍历,因为红黑树最小节点在最左处
    final Entry<K,V> getFirstEntry() {
        Entry<K,V> p = root;
        if (p != null)
            while (p.left != null)
                p = p.left;
        return p;
    }

   //返回最后一个entry,右下遍历,因为红黑树最大节点在最右侧
    final Entry<K,V> getLastEntry() {
        Entry<K,V> p = root;
        if (p != null)
            while (p.right != null)
                p = p.right;
        return p;
    }


    //返回指定entry的后继;如果没有则返回null.
    static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
        //t为null,返回null
        if (t == null)
            return null;
        //t右孩子不为null,遍历t的右孩子的左孩子,返回比t稍微大的那个节点
        else if (t.right != null) {
            Entry<K,V> p = t.right;
            while (p.left != null)
                p = p.left;
            return p;
        }
        //t右孩子为null,说明没有比t大的节点
        else {
            Entry<K,V> p = t.parent;
            Entry<K,V> ch = t;
            //最后p=null,ch指向根节点,故最后返回null.
            while (p != null && ch == p.right) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
    }

    //返回指定entry的前驱
    static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
        //t为null,返回nul
        if (t == null)
            return null;
        //如果t的左孩子不为空,说明有比t的key小的entry
        else if (t.left != null) {
            Entry<K,V> p = t.left;
            while (p.right != null)
                p = p.right;
            return p;
        }
        //如果t的左孩子为null,说明没有比t的key小的entry,则返回null.
        else {
            Entry<K,V> p = t.parent;
            Entry<K,V> ch = t;
            while (p != null && ch == p.left) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
    }

    /**
     * 平衡操作
     *
     * 在插入,删除节点后的调整平衡操作和CLR版本略有区别.
     * 我们不是使用虚拟nilnode,而是使用一组能正确处理null的访问器。它们用于避免主要算法中的对null检查
     * 对周围造成的混乱。
     * nilnode是红黑树定义中的叶子节点,是null.
     */

    //返回p节点颜色
    //p为null,返回黑色;否则,返回实际p的颜色
    private static <K,V> boolean colorOf(Entry<K,V> p) {
        return (p == null ? BLACK : p.color);
    }

    //返回p节点双亲节点
    private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
        return (p == null ? null: p.parent);
    }

    //为p节点设定颜色为c
    private static <K,V> void setColor(Entry<K,V> p, boolean c) {
        if (p != null)
            p.color = c;
    }

    //返回p条目的左孩子
    private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
        return (p == null) ? null: p.left;
    }

    //返回p条目的右孩子
    private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
        return (p == null) ? null: p.right;
    }


    /**
     * From CLR
     * 左旋操作
     * p为非平衡节点的孩子节点,
     * 平衡后,p的双亲节点的孩子节点变为p的右孩子节点,
     * p变为p右孩子节点的左孩子
     * 原p右孩子节点的左孩子变为p的右孩子
     */
    private void rotateLeft(Entry<K,V> p) {
        if (p != null) {
            //记录p节点的右孩子,
            Entry<K,V> r = p.right;
            //p的右孩子变为p的右孩子的左孩子
            p.right = r.left;
            //如果p的右孩子的左孩子不为null,则将其双亲变为p
            if (r.left != null)
                r.left.parent = p;

            //p的右孩子的双亲变为p的双亲节点
            r.parent = p.parent;
            //如果p的双亲为null,则r变为根节点
            if (p.parent == null)
                root = r;
            //如果p是根节点的左孩子,则将p的双亲节点的左孩子变为r
            else if (p.parent.left == p)
                p.parent.left = r;
            //如果p是双亲节点的右孩子,则将p的双亲节点的右孩子变为r
            else
                p.parent.right = r;
            //r的左孩子变为p
            r.left = p;
            //p的双亲节点变为r
            p.parent = r;
        }
    }

    /**
     * From CLR
     * 右旋方法
     */
    private void rotateRight(Entry<K,V> p) {
        if (p != null) {
            //1.记录p的左孩子节点
            Entry<K,V> l = p.left;
            //2.p和p新的左孩子的关系设置
            //2.1p的左孩子变为l的右孩子
            p.left = l.right;
            //2.2如p的新左孩子不为null,则修改新左孩子的双亲节点为p
            if (l.right != null) l.right.parent = p;
            //3.修改p的双亲节点和p原左孩子的关系
            //3.1p原左孩子的双亲节点改为p的双亲节点
            l.parent = p.parent;
            //3.2如果p节点就是根节点,则根节点修改为p原左孩子
            if (p.parent == null)
                root = l;
            //3.3如果p节点是双亲节点的右孩子,则l变为p双亲节点的右孩子
            else if (p.parent.right == p)
                p.parent.right = l;
            //3.4如果p节点是双亲节点的左孩子,则l变为p双亲节点的左孩子
            else p.parent.left = l;
            //4.p和p原左孩子之间角色兑换
            l.right = p;
            p.parent = l;
        }
    }

    //插入节点后,修复红黑树
    private void fixAfterInsertion(Entry<K,V> x) {
        x.color = RED;

        while (x != null && x != root && x.parent.color == RED) {
            if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
                Entry<K,V> y = rightOf(parentOf(parentOf(x)));
                if (colorOf(y) == RED) {
                    setColor(parentOf(x), BLACK);
                    setColor(y, BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    x = parentOf(parentOf(x));
                } else {
                    if (x == rightOf(parentOf(x))) {
                        x = parentOf(x);
                        rotateLeft(x);
                    }
                    setColor(parentOf(x), BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    rotateRight(parentOf(parentOf(x)));
                }
            } else {
                Entry<K,V> y = leftOf(parentOf(parentOf(x)));
                if (colorOf(y) == RED) {
                    setColor(parentOf(x), BLACK);
                    setColor(y, BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    x = parentOf(parentOf(x));
                } else {
                    if (x == leftOf(parentOf(x))) {
                        x = parentOf(x);
                        rotateRight(x);
                    }
                    setColor(parentOf(x), BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    rotateLeft(parentOf(parentOf(x)));
                }
            }
        }
        root.color = BLACK;
    }

    //删除红黑树节点
    private void deleteEntry(Entry<K,V> p) {
        modCount++;
        size--;

        // If strictly internal, copy successor's element to p and then make p
        // point to successor.
        if (p.left != null && p.right != null) {
            Entry<K,V> s = successor(p);
            p.key = s.key;
            p.value = s.value;
            p = s;
        } // p has 2 children

        // Start fixup at replacement node, if it exists.
        Entry<K,V> replacement = (p.left != null ? p.left : p.right);

        if (replacement != null) {
            // Link replacement to parent
            replacement.parent = p.parent;
            if (p.parent == null)
                root = replacement;
            else if (p == p.parent.left)
                p.parent.left  = replacement;
            else
                p.parent.right = replacement;

            // Null out links so they are OK to use by fixAfterDeletion.
            p.left = p.right = p.parent = null;

            // Fix replacement
            if (p.color == BLACK)
                fixAfterDeletion(replacement);
        } else if (p.parent == null) { // return if we are the only node.
            root = null;
        } else { //  No children. Use self as phantom replacement and unlink.
            if (p.color == BLACK)
                fixAfterDeletion(p);

            if (p.parent != null) {
                if (p == p.parent.left)
                    p.parent.left = null;
                else if (p == p.parent.right)
                    p.parent.right = null;
                p.parent = null;
            }
        }
    }

    //节点删除后,调整红黑树
    private void fixAfterDeletion(Entry<K,V> x) {
        while (x != root && colorOf(x) == BLACK) {
            if (x == leftOf(parentOf(x))) {
                Entry<K,V> sib = rightOf(parentOf(x));

                if (colorOf(sib) == RED) {
                    setColor(sib, BLACK);
                    setColor(parentOf(x), RED);
                    rotateLeft(parentOf(x));
                    sib = rightOf(parentOf(x));
                }

                if (colorOf(leftOf(sib))  == BLACK &&
                        colorOf(rightOf(sib)) == BLACK) {
                    setColor(sib, RED);
                    x = parentOf(x);
                } else {
                    if (colorOf(rightOf(sib)) == BLACK) {
                        setColor(leftOf(sib), BLACK);
                        setColor(sib, RED);
                        rotateRight(sib);
                        sib = rightOf(parentOf(x));
                    }
                    setColor(sib, colorOf(parentOf(x)));
                    setColor(parentOf(x), BLACK);
                    setColor(rightOf(sib), BLACK);
                    rotateLeft(parentOf(x));
                    x = root;
                }
            } else { // symmetric
                Entry<K,V> sib = leftOf(parentOf(x));

                if (colorOf(sib) == RED) {
                    setColor(sib, BLACK);
                    setColor(parentOf(x), RED);
                    rotateRight(parentOf(x));
                    sib = leftOf(parentOf(x));
                }

                if (colorOf(rightOf(sib)) == BLACK &&
                        colorOf(leftOf(sib)) == BLACK) {
                    setColor(sib, RED);
                    x = parentOf(x);
                } else {
                    if (colorOf(leftOf(sib)) == BLACK) {
                        setColor(rightOf(sib), BLACK);
                        setColor(sib, RED);
                        rotateLeft(sib);
                        sib = leftOf(parentOf(x));
                    }
                    setColor(sib, colorOf(parentOf(x)));
                    setColor(parentOf(x), BLACK);
                    setColor(leftOf(sib), BLACK);
                    rotateRight(parentOf(x));
                    x = root;
                }
            }
        }

        setColor(x, BLACK);
    }

序列化相关

    //序列化号
    private static final long serialVersionUID = 919286545866124006L;

    //将TreeMap实例的状态保存到stream中,用于序列化
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {

        //1.写入一些隐藏信息
        s.defaultWriteObject();

        //2.写入size
        s.writeInt(size);

        //3.依次写入key-value对
        for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
            Map.Entry<K,V> e = i.next();
            s.writeObject(e.getKey());
            s.writeObject(e.getValue());
        }
    }

    //利用输入stream,重构TreeMap实例
    private void readObject(final java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {

        //读入隐藏信息
        s.defaultReadObject();

        //读入size大小
        int size = s.readInt();

        //创建TreeMap实例
        buildFromSorted(size, null, s, null);
    }

    /**仅从TreeSet.readObject中调用*/
    void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
            throws java.io.IOException, ClassNotFoundException {
        buildFromSorted(size, null, s, defaultVal);
    }

    /**仅从TreeSet.addAll中调用*/
    void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
        try {
            buildFromSorted(set.size(), set.iterator(), null, defaultVal);
        } catch (java.io.IOException cannotHappen) {
        } catch (ClassNotFoundException cannotHappen) {
        }
    }


    /**
     * 输入数据有序时,建树需要线性时间.
     * 也可以从迭代器或stream中获取key-value.
     * 这导致太多参数,但似乎比替代方案更好。这种方法接受的四种格式是:
     *    1) An iterator of Map.Entries.  (it != null, defaultVal == null).
     *    2) An iterator of keys.         (it != null, defaultVal != null).
     *    3) A stream of alternating serialized keys and values.
     *                                   (it == null, defaultVal == null).
     *    4) A stream of serialized keys. (it == null, defaultVal != null).
     *
     * 这一方法假设TreeMap的比较器在调用这个方法前已经存在.
     *
     * @param size 从迭代器或stream中要读取的entry个数
     * @param it 如果非null,则创建的entry从迭代器读取.
     * @param str 则新创建的entry会按照序列化的格式进行读取.
     * @param defaultVal 如果非null,则TreeMap实例的所有的entry的value都被设置为defaultVal
     */
    private void buildFromSorted(int size, Iterator<?> it,
                                 java.io.ObjectInputStream str,
                                 V defaultVal)
            throws  java.io.IOException, ClassNotFoundException {
        this.size = size;
        root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
                it, str, defaultVal);
    }

    /**
     * 递归的“辅助方法”,完成了前面方法的实际工作.
     * 参数功能和命名基本一致.
     * 此方法调用前,已经假设了TreeMap的比较器和size域存在.
     *
     * @param level 树的当前层次,第一次调用时被置为0.
     * @param lo subtree第一个节点的索引,初始化时被置为0.
     * @param hi subtree最后一个节点的索引,初始化时被置为size-1.
     * @param redLevel 节点应该是红色的层,这个数值必须和同样size的红黑树在computeRedLevel方法的结果一致.
     * 其它参数含义和上一个方法中定义的一致.
     */
    @SuppressWarnings("unchecked")
    private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
                                             int redLevel,
                                             Iterator<?> it,
                                             java.io.ObjectInputStream str,
                                             V defaultVal)
            throws  java.io.IOException, ClassNotFoundException {
        /**
         * 策略:
         * 根节点为中间的元素.为了得到根节点,我们必须先递归调用左子树,以便能获取它所有的元素.
         * 然后才可以对右子树做操作.
         *
         * 参数lo和hi是在构建当前subtree时,从迭代器或stream获取元素的最大和最小索引.
         * 但是,它们并不是TreeMap的真正索引,这只是标志了顺序获取元素的索引.从而保证获取
         * 元素的正确性.
         */

        if (hi < lo) return null;

        //无符号右移一位
        int mid = (lo + hi) >>> 1;

        Entry<K,V> left  = null;
        if (lo < mid)
            left = buildFromSorted(level+1, lo, mid - 1, redLevel,
                    it, str, defaultVal);

        //从iterator or stream获取entry
        K key;
        V value;
        if (it != null) {
            if (defaultVal==null) {
                Map.Entry<?,?> entry = (Map.Entry<?,?>)it.next();
                key = (K)entry.getKey();
                value = (V)entry.getValue();
            } else {
                key = (K)it.next();
                value = defaultVal;
            }
        } else { // use stream
            key = (K) str.readObject();
            value = (defaultVal != null ? defaultVal : (V) str.readObject());
        }

        Entry<K,V> middle =  new Entry<>(key, value, null);

        // color nodes in non-full bottommost level red
        if (level == redLevel)
            middle.color = RED;

        if (left != null) {
            middle.left = left;
            left.parent = middle;
        }

        if (mid < hi) {
            Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
                    it, str, defaultVal);
            middle.right = right;
            right.parent = middle;
        }

        //返回根节点
        return middle;
    }    
    /**
     * 找到向下分配所有BLACK节点的层次.这是buildTree生成的完整二叉树的最后一个“完整”层。
     * 剩下的节点被标记为红色.(这会为将来的插入提供一个很好的颜色分配。)
     * 这个层次的数字是通过查找到达第0个节点所需的分割数量来计算的.
     * 时间复杂度:lg(N)
     */
    //返回TreeMap红黑树中有几层红色节点
    private static int computeRedLevel(int sz) {
        int level = 0;
        //通过计算,可以发现,从最底层索引idx=sz-1开始,然后除2再减1,得到上一层红色节点层次.
        for (int m = sz - 1; m >= 0; m = m / 2 - 1)
            level++;
        return level;
    }

分割器

    /**
     * 目前,无论是降序形式还是默认升序的map,我们都只支持整个map的分割迭代器,因为subMap的
     * 大小估计会占用很大的性能损耗.
     * 对key视图的类型检查虽然代码上不是很友好,但是这样做缺可以避免破坏现存类的结构.
     * 如果返回结果为null,调用者必须使用默认的空分割器.
     */
    static <K> Spliterator<K> keySpliteratorFor(NavigableMap<K,?> m) {
        if (m instanceof TreeMap) {
            @SuppressWarnings("unchecked") TreeMap<K,Object> t =
                    (TreeMap<K,Object>) m;
            return t.keySpliterator();
        }
        if (m instanceof DescendingSubMap) {
            @SuppressWarnings("unchecked") DescendingSubMap<K,?> dm =
                    (DescendingSubMap<K,?>) m;
            TreeMap<K,?> tm = dm.m;
            if (dm == tm.descendingMap) {
                @SuppressWarnings("unchecked") TreeMap<K,Object> t =
                        (TreeMap<K,Object>) tm;
                return t.descendingKeySpliterator();
            }
        }
        @SuppressWarnings("unchecked") NavigableSubMap<K,?> sm =
                (NavigableSubMap<K,?>) m;
        return sm.keySpliterator();
    }
    //上面方法的辅助方法
    final Spliterator<K> keySpliterator() {
        return new KeySpliterator<K,V>(this, null, null, 0, -1, 0);
    }

    //同为上面方法的辅助方法
    final Spliterator<K> descendingKeySpliterator() {
        return new DescendingKeySpliterator<K,V>(this, null, null, 0, -2, 0);
    }

    /**
     * 分割器的基类.
     * 迭代从给定的起点开始,继续到但不包括给定的终结点(或者为空).
     * 在顶层,对于升序map来说,root节点把map分割成两部分,左侧节点比root节点值小,右侧比root大.
     * 从此,右子树的分割器使用它的左孩子作为它分割器的原点.左子树同样的分割道理.
     * 降序map将最后一个节点作为它的起点,且对升序分割原则反向使用.
     * 这个基类在方向性,或者顶层分割器是否覆盖了整个树这两个方面都是非常规的.
     * 这也就意味着实际的拆分机制位于子类中.
     * 一些子类的trySplit方法是相同的(除了返回类型),但并非说这就是好事.
     *
     * 目前,子类版本仅适用于整个map(包括利用降序map得到的迭代器).
     * 其它版本在实现上也是可能的,但是目前并不值得这样做,因为submap需要O(n)的时间来确定它的size.
     * 这大大限制了自定义Spliterator加速的能力。
     *
     * 为了启动初始化,额外构造器使用负数size进行预估:-1代表升序;-2代表降序.
     */
    static class TreeMapSpliterator<K,V> {
        final TreeMap<K,V> tree;
        TreeMap.Entry<K,V> current; // traverser; initially first node in range
        TreeMap.Entry<K,V> fence;   // one past last, or null
        int side;                   // 0: top, -1: is a left split, +1: right
        int est;                    // size estimate (exact only for top-level)
        int expectedModCount;       // for CME checks

        TreeMapSpliterator(TreeMap<K,V> tree,
                           TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
                           int side, int est, int expectedModCount) {
            this.tree = tree;
            this.current = origin;
            this.fence = fence;
            this.side = side;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getEstimate() { // 强制初始化
            int s; TreeMap<K,V> t;
            if ((s = est) < 0) {
                if ((t = tree) != null) {
                    current = (s == -1) ? t.getFirstEntry() : t.getLastEntry();
                    s = est = t.size;
                    expectedModCount = t.modCount;
                }
                else
                    s = est = 0;
            }
            return s;
        }

        public final long estimateSize() {
            return (long)getEstimate();
        }
    }

    //key分割器,扩展自TreeMapSpliterator
    static final class KeySpliterator<K,V>
            extends TreeMapSpliterator<K,V>
            implements Spliterator<K> {
        KeySpliterator(TreeMap<K,V> tree,
                       TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
                       int side, int est, int expectedModCount) {
            super(tree, origin, fence, side, est, expectedModCount);
        }

        public KeySpliterator<K,V> trySplit() {
            if (est < 0)
                getEstimate(); // force initialization
            int d = side;
            TreeMap.Entry<K,V> e = current, f = fence,
                    s = ((e == null || e == f) ? null :      // empty
                            (d == 0)              ? tree.root : // was top
                                    (d >  0)              ? e.right :   // was right
                                            (d <  0 && f != null) ? f.left :    // was left
                                                    null);
            if (s != null && s != e && s != f &&
                    tree.compare(e.key, s.key) < 0) {        // e not already past s
                side = 1;
                return new KeySpliterator<>
                        (tree, e, current = s, -1, est >>>= 1, expectedModCount);
            }
            return null;
        }

        public void forEachRemaining(java.util.function.Consumer<? super K> action) {
            if (action == null)
                throw new NullPointerException();
            if (est < 0)
                getEstimate(); // force initialization
            TreeMap.Entry<K,V> f = fence, e, p, pl;
            if ((e = current) != null && e != f) {
                current = f; // exhaust
                do {
                    action.accept(e.key);
                    if ((p = e.right) != null) {
                        while ((pl = p.left) != null)
                            p = pl;
                    }
                    else {
                        while ((p = e.parent) != null && e == p.right)
                            e = p;
                    }
                } while ((e = p) != null && e != f);
                if (tree.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(java.util.function.Consumer<? super K> action) {
            TreeMap.Entry<K,V> e;
            if (action == null)
                throw new NullPointerException();
            if (est < 0)
                getEstimate(); // force initialization
            if ((e = current) == null || e == fence)
                return false;
            current = successor(e);
            action.accept(e.key);
            if (tree.modCount != expectedModCount)
                throw new ConcurrentModificationException();
            return true;
        }

        public int characteristics() {
            return (side == 0 ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED;
        }

        public final Comparator<? super K>  getComparator() {
            return tree.comparator;
        }

    }

    //降序key分割器
    static final class DescendingKeySpliterator<K,V>
            extends TreeMapSpliterator<K,V>
            implements Spliterator<K> {
        DescendingKeySpliterator(TreeMap<K,V> tree,
                                 TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
                                 int side, int est, int expectedModCount) {
            super(tree, origin, fence, side, est, expectedModCount);
        }

        public DescendingKeySpliterator<K,V> trySplit() {
            if (est < 0)
                getEstimate(); // force initialization
            int d = side;
            TreeMap.Entry<K,V> e = current, f = fence,
                    s = ((e == null || e == f) ? null :      // empty
                            (d == 0)              ? tree.root : // was top
                                    (d <  0)              ? e.left :    // was left
                                            (d >  0 && f != null) ? f.right :   // was right
                                                    null);
            if (s != null && s != e && s != f &&
                    tree.compare(e.key, s.key) > 0) {       // e not already past s
                side = 1;
                return new DescendingKeySpliterator<>
                        (tree, e, current = s, -1, est >>>= 1, expectedModCount);
            }
            return null;
        }

        public void forEachRemaining(java.util.function.Consumer<? super K> action) {
            if (action == null)
                throw new NullPointerException();
            if (est < 0)
                getEstimate(); // force initialization
            TreeMap.Entry<K,V> f = fence, e, p, pr;
            if ((e = current) != null && e != f) {
                current = f; // exhaust
                do {
                    action.accept(e.key);
                    if ((p = e.left) != null) {
                        while ((pr = p.right) != null)
                            p = pr;
                    }
                    else {
                        while ((p = e.parent) != null && e == p.left)
                            e = p;
                    }
                } while ((e = p) != null && e != f);
                if (tree.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(java.util.function.Consumer<? super K> action) {
            TreeMap.Entry<K,V> e;
            if (action == null)
                throw new NullPointerException();
            if (est < 0)
                getEstimate(); // force initialization
            if ((e = current) == null || e == fence)
                return false;
            current = predecessor(e);
            action.accept(e.key);
            if (tree.modCount != expectedModCount)
                throw new ConcurrentModificationException();
            return true;
        }

        public int characteristics() {
            return (side == 0 ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT | Spliterator.ORDERED;
        }
    }

    //value分割器
    static final class ValueSpliterator<K,V>
            extends TreeMapSpliterator<K,V>
            implements Spliterator<V> {
        ValueSpliterator(TreeMap<K,V> tree,
                         TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
                         int side, int est, int expectedModCount) {
            super(tree, origin, fence, side, est, expectedModCount);
        }

        public ValueSpliterator<K,V> trySplit() {
            if (est < 0)
                getEstimate(); // force initialization
            int d = side;
            TreeMap.Entry<K,V> e = current, f = fence,
                    s = ((e == null || e == f) ? null :      // empty
                            (d == 0)              ? tree.root : // was top
                                    (d >  0)              ? e.right :   // was right
                                            (d <  0 && f != null) ? f.left :    // was left
                                                    null);
            if (s != null && s != e && s != f &&
                    tree.compare(e.key, s.key) < 0) {        // e not already past s
                side = 1;
                return new ValueSpliterator<>
                        (tree, e, current = s, -1, est >>>= 1, expectedModCount);
            }
            return null;
        }

        public void forEachRemaining(java.util.function.Consumer<? super V> action) {
            if (action == null)
                throw new NullPointerException();
            if (est < 0)
                getEstimate(); // force initialization
            TreeMap.Entry<K,V> f = fence, e, p, pl;
            if ((e = current) != null && e != f) {
                current = f; // exhaust
                do {
                    action.accept(e.value);
                    if ((p = e.right) != null) {
                        while ((pl = p.left) != null)
                            p = pl;
                    }
                    else {
                        while ((p = e.parent) != null && e == p.right)
                            e = p;
                    }
                } while ((e = p) != null && e != f);
                if (tree.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(java.util.function.Consumer<? super V> action) {
            TreeMap.Entry<K,V> e;
            if (action == null)
                throw new NullPointerException();
            if (est < 0)
                getEstimate(); // force initialization
            if ((e = current) == null || e == fence)
                return false;
            current = successor(e);
            action.accept(e.value);
            if (tree.modCount != expectedModCount)
                throw new ConcurrentModificationException();
            return true;
        }

        public int characteristics() {
            return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.ORDERED;
        }
    }

    //entry分割器
    static final class EntrySpliterator<K,V>
            extends TreeMapSpliterator<K,V>
            implements Spliterator<Map.Entry<K,V>> {
        EntrySpliterator(TreeMap<K,V> tree,
                         TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
                         int side, int est, int expectedModCount) {
            super(tree, origin, fence, side, est, expectedModCount);
        }

        public EntrySpliterator<K,V> trySplit() {
            if (est < 0)
                getEstimate(); // force initialization
            int d = side;
            TreeMap.Entry<K,V> e = current, f = fence,
                    s = ((e == null || e == f) ? null :      // empty
                            (d == 0)              ? tree.root : // was top
                                    (d >  0)              ? e.right :   // was right
                                            (d <  0 && f != null) ? f.left :    // was left
                                                    null);
            if (s != null && s != e && s != f &&
                    tree.compare(e.key, s.key) < 0) {        // e not already past s
                side = 1;
                return new EntrySpliterator<>
                        (tree, e, current = s, -1, est >>>= 1, expectedModCount);
            }
            return null;
        }

        public void forEachRemaining(java.util.function.Consumer<? super Map.Entry<K, V>> action) {
            if (action == null)
                throw new NullPointerException();
            if (est < 0)
                getEstimate(); // force initialization
            TreeMap.Entry<K,V> f = fence, e, p, pl;
            if ((e = current) != null && e != f) {
                current = f; // exhaust
                do {
                    action.accept(e);
                    if ((p = e.right) != null) {
                        while ((pl = p.left) != null)
                            p = pl;
                    }
                    else {
                        while ((p = e.parent) != null && e == p.right)
                            e = p;
                    }
                } while ((e = p) != null && e != f);
                if (tree.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
            TreeMap.Entry<K,V> e;
            if (action == null)
                throw new NullPointerException();
            if (est < 0)
                getEstimate(); // force initialization
            if ((e = current) == null || e == fence)
                return false;
            current = successor(e);
            action.accept(e);
            if (tree.modCount != expectedModCount)
                throw new ConcurrentModificationException();
            return true;
        }

        public int characteristics() {
            return (side == 0 ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED;
        }

        @Override
        public Comparator<Map.Entry<K, V>> getComparator() {
            // Adapt or create a key-based comparator
            if (tree.comparator != null) {
                return Map.Entry.comparingByKey(tree.comparator);
            }
            else {
                return (Comparator<Map.Entry<K, V>> & Serializable) (e1, e2) -> {
                    @SuppressWarnings("unchecked")
                    java.lang.Comparable<? super K> k1 = (java.lang.Comparable<? super K>) e1.getKey();
                    return k1.compareTo(e2.getKey());
                };
            }
        }
    }

猜你喜欢

转载自blog.csdn.net/caoxiaohong1005/article/details/79673550