go语言:go语言的基本语法

一、Go语言变量的声明(使用var关键字)

Go语言是静态类型语言,因此变量(variable)是有明确类型的,编译器也会检查变量类型的正确性。在数学概念中,变量表示没有固定值且可改变的数。但从计算机系统实现角度来看,变量是一段或多段用来存储数据的内存。

声明变量的一般形式是使用 var 关键字:

var name type

其中,var 是声明变量的关键字,name 是变量名,type 是变量的类型。

需要注意的是,Go语言和许多编程语言不同,它在声明变量时将变量的类型放在变量的名称之后。这样做的好处就是可以避免像C语言中那样含糊不清的声明形式,例如:int* a, b; 。其中只有 a 是指针而 b 不是。如果你想要这两个变量都是指针,则需要将它们分开书写。而在 Go 中,则可以和轻松地将它们都声明为指针类型:

var a, b *int

Go语言的基本类型有:

  • bool
  • string
  • int、int8、int16、int32、int64
  • uint、uint8、uint16、uint32、uint64、uintptr
  • byte // uint8 的别名
  • rune // int32 的别名 代表一个 Unicode 码
  • float32、float64
  • complex64、complex128

当一个变量被声明之后,系统自动赋予它该类型的零值:int 为 0,float 为 0.0,bool 为 false,string 为空字符串,指针为 nil 等。所有的内存在 Go 中都是经过初始化的。

变量的命名规则遵循骆驼命名法,即首个单词小写,每个新单词的首字母大写,例如:
numShips 和 startDate 。

变量的声明有几种形式,通过下面几节进行整理归纳。

标准格式

Go语言的变量声明的标准格式为:
var 变量名 变量类型

变量声明以关键字 var 开头,后置变量类型,行尾无须分号。

批量格式

觉得每行都用 var 声明变量比较烦琐?没关系,还有一种为懒人提供的定义变量的方法:

扫描二维码关注公众号,回复: 10823136 查看本文章
var (
    a int
    b string
    c []float32
    d func() bool
    e struct {
        x int
    }
)

使用关键字 var 和括号,可以将一组变量定义放在一起。

简短格式

除 var 关键字外,还可使用更加简短的变量定义和初始化语法。

名字 := 表达式

需要注意的是,简短模式(short variable declaration)有以下限制:
定义变量,同时显式初始化。
不能提供数据类型。
只能用在函数内部。

和 var 形式声明语句一样,简短变量声明语句也可以用来声明和初始化一组变量:

i, j := 0, 1

下面通过一段代码来演示简短格式变量声明的基本样式。

func main() {
   x:=100
   a,s:=1, "abc"
}

因为简洁和灵活的特点,简短变量声明被广泛用于大部分的局部变量的声明和初始化。var 形式的声明语句往往是用于需要显式指定变量类型地方,或者因为变量稍后会被重新赋值而初始值无关紧要的地方。

二、Go语言变量的初始化

正如上一节《Go语言变量声明》中提到的Go语言在声明变量时,自动对变量对应的内存区域进行初始化操作。每个变量会初始化其类型的默认值,例如:

  • 整型和浮点型变量的默认值为 0 和 0.0。
  • 字符串变量的默认值为空字符串。
  • 布尔型变量默认为 bool。
  • 切片、函数、指针变量的默认为 nil。

当然,依然可以在变量声明时赋予变量一个初始值。
回顾C语言
在C语言中,变量在声明时,并不会对变量对应内存区域进行清理操作。此时,变量值可能是完全不可预期的结果。开发者需要习惯在使用C语言进行声明时要初始化操作,稍有不慎,就会造成不可预知的后果。

在网络上只有程序员才能看懂的“烫烫烫”和“屯屯屯”的梗,就来源于 C/C++ 中变量默认不初始化。

微软的 VC 编译器会将未初始化的栈空间以 16 进制的 0xCC 填充,而未初始化的堆空间使用 0xCD 填充,而 0xCCCC 和 0xCDCD 在中文的 GB2312 编码中刚好对应“烫”和“屯”字。

因此,如果一个字符串没有结束符\0,直接输出的内存数据转换为字符串就刚好对应“烫烫烫”和“屯屯屯”。
变量初始化的标准格式

var 变量名 类型 = 表达式

例如,游戏中,玩家的血量初始值为100。可以这样写:

var hp int = 100

这句代码中,hp 为变量名,类型为 int,hp 的初始值为 100。

上面代码中,100 和 int 同为 int 类型,int 可以认为是冗余信息,因此可以进一步简化初始化的写法。
编译器推导类型的格式
在标准格式的基础上,将 int 省略后,编译器会尝试根据等号右边的表达式推导 hp 变量的类型。

var hp = 100

等号右边的部分在编译原理里被称做右值(rvalue)。

下面是编译器根据右值推导变量类型完成初始化的例子。

1var attack = 40
2var defence = 20
3var damageRate float32 = 0.17
4var damage = float32(attack-defence) * damageRate
5、fmt.Println(damage)

代码说明如下:
第 1 和 2 行,右值为整型,attack 和 defence 变量的类型为 int。
第 3 行,表达式的右值中使用了 0.17。由于Go语言和C语言一样,编译器会尽量提高精确度,以避免计算中的精度损失。所以这里如果不指定 damageRate 变量的类型,Go语言编译器会将 damageRate 类型推导为 float64,我们这里不需要 float64 的精度,所以需要强制指定类型为 float32。
第 4 行,将 attack 和 defence 相减后的数值结果依然为整型,使用 float32() 将结果转换为 float32 类型,再与 float32 类型的 damageRate 相乘后,damage 类型也是 float32 类型。
提示:damage 变量的右值是一个复杂的表达式,整个过程既有 attack 和 defence 的运算还有强制类型转换。强制类型转换会在后面的章节中介绍。
第 5 行,输出 damage 的值。
以上代码输出结果为:

3.4

短变量声明并初始化
var 的变量声明还有一种更为精简的写法,例如:

hp := 100

这是Go语言的推导声明写法,编译器会自动根据右值类型推断出左值的对应类型。
注意:由于使用了:=,而不是赋值的=,因此推导声明写法的左值变量必须是没有定义过的变量。若定义过,将会发生编译错误。

如果 hp 已经被声明过,但依然使用:=时编译器会报错,代码如下:

// 声明 hp 变量 var hp int

// 再次声明并赋值 hp := 10

编译报错如下:

no new variables on left side of :=

意思是,在“:=”的左边没有新变量出现,意思就是“:=”的左边变量已经被声明了。

短变量声明的形式在开发中的例子较多,比如:

conn, err := net.Dial(“tcp”,“127.0.0.1:8080”)

net.Dial 提供按指定协议和地址发起网络连接,这个函数有两个返回值,一个是连接对象(conn),一个是错误对象(err)。如果是标准格式将会变成:

var conn net.Conn
var err error
conn, err = net.Dial("tcp", "127.0.0.1:8080")

因此,短变量声明并初始化的格式在开发中使用比较普遍。

注意:在多个短变量声明和赋值中,至少有一个新声明的变量出现在左值中,即便其他变量名可能是重复声明的,编译器也不会报错,代码如下:

conn, err := net.Dial(“tcp”, “127.0.0.1:8080”)
conn2, err :=net.Dial(“tcp”, “127.0.0.1:8080”)

上面的代码片段,编译器不会报 err 重复定义。

三、Go语言多个变量同时赋值

编程最简单的算法之一,莫过于变量交换。交换变量的常见算法需要一个中间变量进行变量的临时保存。用传统方法编写变量交换代码如下:

var a int = 100
var b int = 200
var t int
t = a
a = b
b = t
fmt.Println(a, b)

在计算机刚发明时,内存非常“精贵”。这种变量交换往往是非常奢侈的。于是计算机“大牛”发明了一些算法来避免使用中间变量:

var a int = 100
var b int = 200
a = a ^ b
b = b ^ a
a = a ^ b
fmt.Println(a, b)

这样的算法很多,但是都有一定的数值范围和类型要求。

到了Go语言时,内存不再是紧缺资源,而且写法可以更简单。使用 Go 的“多重赋值”特性,可以轻松完成变量交换的任务:

var a int = 100
var b int = 200
b, a = a, b
fmt.Println(a, b)

多重赋值时,变量的左值和右值按从左到右的顺序赋值。

多重赋值在Go语言的错误处理和函数返回值中会大量地使用。例如使用Go语言进行排序时就需要使用交换,代码如下:

type IntSlice []int
func (p IntSlice) Len() int           { return len(p) }
func (p IntSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p IntSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

代码说明如下:
第 1 行,将 IntSlice 声明为 []int 类型。
第 3 行,为 IntSlice 类型编写一个 Len 方法,提供切片的长度。
第 4 行,根据提供的 i、j 元素索引,获取元素后进行比较,返回比较结果。
第 5 行,根据提供的 i、j 元素索引,交换两个元素的值。

四、Go语言匿名变量(没有名字的变量)

在编码过程中,可能会遇到没有名称的变量、类型或方法。虽然这不是必须的,但有时候这样做可以极大地增强代码的灵活性,这些变量被统称为匿名变量。

匿名变量的特点是一个下画线“_”,“_”本身就是一个特殊的标识符,被称为空白标识符。它可以像其他标识符那样用于变量的声明或赋值(任何类型都可以赋值给它),但任何赋给这个标识符的值都将被抛弃,因此这些值不能在后续的代码中使用,也不可以使用这个标识符作为变量对其它变量进行赋值或运算。使用匿名变量时,只需要在变量声明的地方使用下画线替换即可。例如:

func GetData() (int, int) {
    return 100, 200
}
func main(){
    a, _ := GetData()
    _, b := GetData()
    fmt.Println(a, b)
}

代码运行结果:

100 200

GetData() 是一个函数,拥有两个整型返回值。每次调用将会返回 100 和 200 两个数值。

代码说明如下:
第 5 行只需要获取第一个返回值,所以将第二个返回值的变量设为下画线(匿名变量)。
第 6 行将第一个返回值的变量设为匿名变量。
匿名变量不占用内存空间,不会分配内存。匿名变量与匿名变量之间也不会因为多次声明而无法使用。
提示:在 Lua 等编程语言里,匿名变量也被叫做哑元变量。

(1)Go语言变量的作用域

一个变量(常量、类型或函数)在程序中都有一定的作用范围,称之为作用域。

了解变量的作用域对我们学习Go语言来说是比较重要的,因为Go语言会在编译时检查每个变量是否使用过,一旦出现未使用的变量,就会报编译错误。如果不能理解变量的作用域,就有可能会带来一些不明所以的编译错误。

根据变量定义位置的不同,可以分为以下三个类型:

  1. 函数内定义的变量称为局部变量
  2. 函数外定义的变量称为全局变量
  3. 函数定义中的变量称为形式参数

下面就来分别介绍一下。

局部变量

在函数体内声明的变量称之为局部变量,它们的作用域只在函数体内,函数的参数和返回值变量都属于局部变量。
局部变量不是一直存在的,它只在定义它的函数被调用后存在,函数调用结束后这个局部变量就会被销毁。

【示例】下面的 main() 函数中使用到了局部变量 a、b、c。

package main
import (
    "fmt"
)
func main() {
    //声明局部变量 a 和 b 并赋值
    var a int = 3
    var b int = 4
    //声明局部变量 c 并计算 a 和 b 的和
    c := a + b
    fmt.Printf("a = %d, b = %d, c = %d\n", a, b, c)
}
运行结果如下所示:
a = 3, b = 4, c = 7

全局变量

在函数体外声明的变量称之为全局变量,全局变量只需要在一个源文件中定义,就可以在所有源文件中使用,当然,不包含这个全局变量的源文件需要使用“import”关键字引入全局变量所在的源文件之后才能使用这个全局变量。
全局变量声明必须以 var 关键字开头,如果想要在外部包中使用全局变量的首字母必须大写

【示例】下面代码中,第 6 行定义了全局变量 c。

package main
import "fmt"
//声明全局变量
var c int
func main() {
    //声明局部变量
    var a, b int
    //初始化参数
    a = 3
    b = 4
    c = a + b
    fmt.Printf("a = %d, b = %d, c = %d\n", a, b, c)
}
运行结果如下所示:
a = 3, b = 4, c = 7

Go语言程序中全局变量与局部变量名称可以相同,但是函数体内的局部变量会被优先考虑。

package main
import "fmt"
//声明全局变量
var a float32 = 3.14
func main() {
    //声明局部变量
    var a int = 3
    fmt.Printf("a = %d\n", a)
}
运行结果如下所示:
a = 3

形式参数

在定义函数时函数名后面括号中的变量叫做形式参数(简称形参)。形式参数只在函数调用时才会生效,函数调用结束后就会被销毁,在函数未被调用时,函数的形参并不占用实际的存储单元,也没有实际值。

形式参数会作为函数的局部变量来使用。

【示例】下面代码中第 21 行定义了形式参数 a 和 b。

package main
import (
    "fmt"
)
//全局变量 a
var a int = 13
func main() {
    //局部变量 a 和 b
    var a int = 3
    var b int = 4
    fmt.Printf("main() 函数中 a = %d\n", a)
    fmt.Printf("main() 函数中 b = %d\n", b)
    c := sum(a, b)
    fmt.Printf("main() 函数中 c = %d\n", c)
}
func sum(a, b int) int {
    fmt.Printf("sum() 函数中 a = %d\n", a)
    fmt.Printf("sum() 函数中 b = %d\n", b)
    num := a + b
    return num
}
运行结果如下所示:
main() 函数中 a = 3
main() 函数中 b = 4
sum() 函数中 a = 3
sum() 函数中 b = 4
main() 函数中 c = 7

(2)Go语言整型(整数类型)

Go语言的数值类型分为以下几种:整数、浮点数、复数,其中每一种都包含了不同大小的数值类型,例如有符号整数包含 int8、int16、int32、int64 等,每种数值类型都决定了对应的大小范围和是否支持正负符号。本节我们主要介绍一下整数类型。

Go语言同时提供了有符号和无符号的整数类型,其中包括 int8、int16、int32 和 int64 四种大小截然不同的有符号整数类型,分别对应 8、16、32、64 bit(二进制位)大小的有符号整数,与此对应的是 uint8、uint16、uint32 和 uint64 四种无符号整数类型。

此外还有两种整数类型 int 和 uint,它们分别对应特定 CPU 平台的字长(机器字大小),其中 int 表示有符号整数,应用最为广泛,uint 表示无符号整数。实际开发中由于编译器和计算机硬件的不同,int 和 uint 所能表示的整数大小会在 32bit 或 64bit 之间变化。

大多数情况下,我们只需要 int 一种整型即可,它可以用于循环计数器(for 循环中控制循环次数的变量)、数组和切片的索引,以及任何通用目的的整型运算符,通常 int 类型的处理速度也是最快的。

用来表示 Unicode 字符的 rune 类型和 int32 类型是等价的,通常用于表示一个 Unicode 码点。这两个名称可以互换使用。同样,byte 和 uint8 也是等价类型,byte 类型一般用于强调数值是一个原始的数据而不是一个小的整数。

最后,还有一种无符号的整数类型 uintptr,它没有指定具体的 bit 大小但是足以容纳指针。uintptr 类型只有在底层编程时才需要,特别是Go语言和C语言函数库或操作系统接口相交互的地方。

尽管在某些特定的运行环境下 int、uint 和 uintptr 的大小可能相等,但是它们依然是不同的类型,比如 int 和 int32,虽然 int 类型的大小也可能是 32 bit,但是在需要把 int 类型当做 int32 类型使用的时候必须显示的对类型进行转换,反之亦然。

Go语言中有符号整数采用 2 的补码形式表示,也就是最高 bit 位用来表示符号位,一个 n-bit 的有符号数的取值范围是从 -2(n-1) 到 2(n-1)-1。无符号整数的所有 bit 位都用于表示非负数,取值范围是 0 到 2n-1。例如,int8 类型整数的取值范围是从 -128 到 127,而 uint8 类型整数的取值范围是从 0 到 255。
哪些情况下使用 int 和 uint
程序逻辑对整型范围没有特殊需求。例如,对象的长度使用内建 len() 函数返回,这个长度可以根据不同平台的字节长度进行变化。实际使用中,切片或 map 的元素数量等都可以用 int 来表示。

反之,在二进制传输、读写文件的结构描述时,为了保持文件的结构不会受到不同编译目标平台字节长度的影响,不要使用 int 和 uint。

(3)Go语言浮点类型(小数类型)

Go语言提供了两种精度的浮点数 float32 和 float64,它们的算术规范由 IEEE754 浮点数国际标准定义,该浮点数规范被所有现代的 CPU 支持。

这些浮点数类型的取值范围可以从很微小到很巨大。浮点数取值范围的极限值可以在 math 包中找到:

常量 math.MaxFloat32 表示 float32 能取到的最大数值,大约是 3.4e38;
常量 math.MaxFloat64表示 float64 能取到的最大数值,大约是 1.8e308;
float32 和 float64 能表示的最小值分别为 1.4e-45和 4.9e-324。

一个 float32 类型的浮点数可以提供大约 6 个十进制数的精度,而 float64 则可以提供约 15 个十进制数的精度,通常应该优先使用 float64 类型,因为 float32 类型的累计计算误差很容易扩散,并且 float32 能精确表示的正整数并不是很大。

var f float32 = 16777216 // 1 << 24
fmt.Println(f == f+1) // “true”!

浮点数在声明的时候可以只写整数部分或者小数部分,像下面这样:

const e = .71828 // 0.71828
const f = 1. // 1

很小或很大的数最好用科学计数法书写,通过 e 或 E 来指定指数部分:

const Avogadro = 6.02214129e23 // 阿伏伽德罗常数
const Planck = 6.62606957e-34 // 普朗克常数

用 Printf 函数打印浮点数时可以使用“%f”来控制保留几位小数

package main
import (
    "fmt"
    "math"
)
func main() {
    fmt.Printf("%f\n", math.Pi)
    fmt.Printf("%.2f\n", math.Pi)
}
运行结果如下所示:
3.141593
3.14

(4)Go语言复数

在计算机中,复数是由两个浮点数表示的,其中一个表示实部(real),一个表示虚部(imag)

Go语言中复数的类型有两种,分别是 complex128(64 位实数和虚数)和 complex64(32 位实数和虚数),其中 complex128 为复数的默认类型

复数的值由三部分组成 RE + IMi,其中 RE 是实数部分,IM 是虚数部分,RE 和 IM 均为 float 类型,而最后的 i 是虚数单位。

声明复数的语法格式如下所示:

var name complex128 = complex(x, y)

其中 name 为复数的变量名,complex128 为复数的类型,“=”后面的 complex 为Go语言的内置函数用于为复数赋值,x、y 分别表示构成该复数的两个 float64 类型的数值,x 为实部,y 为虚部。

上面的声明语句也可以简写为下面的形式:

name := complex(x, y)

对于一个复数z := complex(x, y),可以通过Go语言的内置函数real(z) 来获得该复数的实部,也就是 x;通过imag(z) 获得该复数的虚部,也就是 y。

【示例】使用内置的 complex 函数构建复数,并使用 real 和 imag 函数返回复数的实部和虚部:

var x complex128 = complex(1, 2) // 1+2i
var y complex128 = complex(3, 4) // 3+4i
fmt.Println(x*y)                 // "(-5+10i)"
fmt.Println(real(x*y))           // "-5"
fmt.Println(imag(x*y))           // "10"

如果大家对复数的运算法则不是很了解,可以查阅《复数运算法则》,其中详细的讲解了复数的加减乘除操作。

复数也可以用==和!=进行相等比较,只有两个复数的实部和虚部都相等的时候它们才是相等的。

Go语言内置的 math/cmplx 包中提供了很多操作复数的公共方法,实际操作中建议大家使用复数默认的 complex128 类型,因为这些内置的包中都使用 complex128 类型作为参数。

发布了58 篇原创文章 · 获赞 4 · 访问量 1769

猜你喜欢

转载自blog.csdn.net/weixin_44202489/article/details/104522378