课外扩展(一)

认识嵌入式系统

嵌入式系统简介

嵌入式系统由硬件和软件组成.是能够独立进行运作的器件。其软件内容只包括软件运行环境及其操作系统。硬件内容包括信号处理器、存储器、通信模块等在内的多方面的内容。嵌入式系统是以应用为中心,以现代计算机技术为基础,能够根据用户需求(功能、可靠性、成本、体积、功耗、环境等)灵活裁剪软硬件模块的专用计算机系统。
要点概括:
以应用为中心:强调嵌入式系统的目标是满足用户的特定需求。就绝大多数完整的嵌入式系统而言,用户打开电源即可直接享用其功能,无需二次开发或仅需少量配置操作。
专用性:嵌入式系统的应用场合大多对可靠性、实时性有较高要求,这就决定了服务于特定应用的专用系统是嵌入式系统的主流模式,它并不强调系统的通用性和可扩展。这种专用性通常也导致嵌入式系统是一个软硬件紧密集成的最终系统,因为这样才能更有效地提高整个系统的可靠性并降低成本,并使之具有更好的用户体验。
以现代计算机技术为核心:嵌入式系统的最基本支撑技术,大致上包括集成电路设计技术、系统结构技术、传感与检测技术、嵌入式操作系统和实时操作系统技术、资源受限系统的高可靠软件开发技术、系统形式化规范与验证技术、通信技术、低功耗技术、特定应用领域的数据分析、信号处理和控制优化技术等,它们围绕计算机基本原理,集成进特定的专用设备就形成了一个嵌入式系统。
软硬件可裁剪:嵌入式系统针对的应用场景如此之多,并带来差异性极大的设计指标要求(功能性能、可靠性、成本、功耗),以至于现实上很难有一套方案满足所有的系统要求,因此根据需求的不同,灵活裁剪软硬件、组建符合要求的最终系统是嵌入式技术发展的必然技术路线。

嵌入式系统特点

嵌入式系统的硬件和软件必须根据具体的应用任务,以功耗、成本、体积、可靠性、处理能力等为指标来进行选择。嵌入式系统的核心是系统软件和应用软件,由于存储空间有限,因而要求软件代码紧凑、可靠,且对实时性有严格要求。
从构成上看,嵌入式系统是集软硬件于一体的、可独立工作的计算机系统;从外观上看,嵌入式系统像是一个“可编程”的电子“器件”;从功能上看,它是对目标系统(宿主对象)进行控制,使其智能化的控制器。从用户和开发人员的不同角度来看,与普通计算机相比较,嵌入式系统具有如下特点。
(1)专用性强。由于嵌入式系统通常是面向某个特定应用的,所以嵌入式系统的硬件和软件,尤其是软件,都是为特定用户群设计的,通常具有某种专用性的特点。
(2)体积小型化。嵌入式计算机把通用计算机系统中许多由板卡完成的任务集成在芯片内部,从而有利于实现小型化,方便将嵌入式系统嵌入目标系统中。
(3)实时性好。嵌入式系统广泛应用于生产过程控制、数据采集、传输通信等场合,主要用来对宿主对象进行控制,所以对嵌入式系统有或多或少的实时性要求。例如,对武器中的嵌入式系统,某些工业控制装置中的控制系统等的实时性要求就极高。有些系统对实时性要求也并不是很高,例如,近年来发展速度比较快的掌上电脑等。但总体来说,实时性是对嵌入式系统的普遍要求,是设计者和用户应重点考虑的一个重要指标。
(4)可裁剪性好。从嵌入式系统专用性的特点来看,嵌入式系统的供应者理应提供各式各样的硬件和软件以备选用,力争在同样的硅片面积上实现更高的性能,这样才能在具体应用中更具竞争力。
(5)可靠性高。由于有些嵌入式系统所承担的计算任务涉及被控产品的关键质量、人身设备安全,甚至国家机密等重大事务,且有些嵌入式系统的宿主对象工作在无人值守的场合,如在危险性高的工业环境和恶劣的野外环境中的监控装置。所以,与普通系统相比较,嵌入式系统对可靠性的要求极高。
(6)功耗低。有许多嵌入式系统的宿主对象是一些小型应用系统,如移动电话、MP3、数码相机等,这些设备不可能配置交流电源或容量较大的电源,因此低功耗一直是嵌入式系统追求的目标。
(7)嵌入式系统本身不具备自我开发能力,必须借助通用计算机平台来开发。嵌入式系统设计完成以后,普通用户通常没有办法对其中的程序或硬件结构进行修改,必须有一套开发工具和环境才能进行。
(8)嵌入式系统通常采用“软硬件协同设计”的方法实现。早期的嵌入式系统设计方法经常采用的是“硬件优先”原则,即在只粗略估计软件任务需求的情况下,首先进行硬件设计与实现,然后在此硬件平台之上进行软件设计。如果采用传统的设计方法,则一旦在测试中发现问题,需要对设计进行修改时,整个设计流程将重新进行,对成本和设计周期的影响很大。系统的设计在很大程度上依赖于设计者的经验。20世纪90年代以来,随着电子和芯片等相关技术的发展,嵌入式系统的设计和实现出现了软硬件协同设计方法,即使用统一的方法和工具对软件和硬件进行描述、综合和验证。在系统目标要求的指导下,通过综合分析系统软硬件功能及现有资源,协同设计软硬件体系结构,以最大限度地挖掘系统软硬件能力,避免由于独立设计软硬件体系结构而带来的种种弊病,得到高性能、低代价的优化设计方案。

发展过程

1、无操作系统阶段
随着各种嵌入式微处理器、微控制器的广泛纵观嵌入式系统的发展历程,大致经历了以嵌入式系统最初的应用是基于单片机的,大多以可编程控制器的形式H=|现,具有监测、伺服、设备指示等功能,通常应用于各类工业控制和飞机、导弹等武器装备中,一般没有操作系统的支持,只能通过汇编语言对系统进行直接控制,运行结束后再清除内存。这些装置虽然已经初步具备了嵌入式的应用特点,但仅仅只是使用8位的CPU芯片来执行一些单线程的程序,因此严格地说还谈不上“系统”的概念。 这一阶段嵌入式系统的主要特点是:系统结构和功能相对单一,处理效率较低,存储容量较小,几乎没有用户接口。由于这种嵌入式系统使用简便、价格低廉,因而曾经在工业控制领域中得到了非常广泛的应用,但却无法满足现今对执行效率、存储容量都有较高要求的信息家电等场合的需要。
2、简单操作系统阶段
20世纪80年代,随着微电子工艺水平的提高,IC制造商开始把嵌入式应用中所需要的微处理器、I/O接口、串行接口以及RAM、ROM等部件统统集成到一片VLSI(超大规模集成电路)中,制造j_}{面向I/O设计的微控制器,并一举成为嵌入式系统领域中异军突起的新秀。与此同时,嵌入式系统的程序员也开始基于一些简单的“操作系统”开发嵌入式应用软件,大大缩短了开发周期、提高了开发效率。这一阶段嵌入式系统的主要特点是:出现了大量高可靠、低功耗的嵌入式CPU(如PowerPC等),各种简单的嵌入式操作系统开始出现并得到迅速发展。此时的嵌入式操作系统虽然还比较简单,但已经初步具有了一定的兼容性和扩展性,内核精巧且效率高,主要用来控制系统负载以及监控应用程序的运行。
3、实时操作系统阶段
20世纪90年代,在分布控制、柔性制造、数字化通信和信息家电等巨大需求的牵引下,嵌入式系统进一步飞速发展,而面向实时信号处理算法的DSP产品则向着高速度、高精度、低功耗的方向发展。随着硬件实时性要求的提高,嵌入式系统的软件规模也不断扩大,逐渐形成了实时多任务操作系统(RTOS),并开始成为嵌入式系统的主流。这一阶段嵌入式系统的主要特点是:操作系统的实时性得到了很大改善,已经能够运行在各种不同类型的微处理器上,具有高度的模块化特点和扩展性。此时的嵌入式操作系统已经具备了文件和目录管理、设备管理、多任务、网络、图形用户界面(GUI)等功能,并提供了大量的应用程序接EI(API),从而使得应用软件的开发变得更加简单。
4、面向Internet阶段
21世纪无疑将是一个网络的时代,将嵌入式系统应用到各种网络环境中去的呼声自然也越来越高。目前大多数嵌入式系统还孤立于Intemet之外,随着Intemet的进一步发展,以及Intemet技术与信息家电、工业控制技术等日益紧密的结合,嵌入式设备与Intemet的结合才是嵌入式技术的真正未来。

发布了14 篇原创文章 · 获赞 1 · 访问量 477

猜你喜欢

转载自blog.csdn.net/a1152946932/article/details/104594708