kubelet源码分析: CNI 插件处理流程

整体介绍

kubelet通过调用 grpc 接口调用实现了 CRI 的 dockershim 完成 rpc 通信,CNI 是由 dockershim grpc server 中调用的

kubelet -> CRI shim -> container runtime -> container

POD 创建过程中从 kubelet 到 docker server 到 cni 的 UML 结构如下

CNI 插件初始化

kubelet 在初始化的时候如果使用containerRuntime为Docker,则会起动dockershim rpc server

case kubetypes.DockerContainerRuntime:
    // Create and start the CRI shim running as a grpc server.
    streamingConfig := getStreamingConfig(kubeCfg, kubeDeps)
    ds, err := dockershim.NewDockerService(kubeDeps.DockerClientConfig, crOptions.PodSandboxImage, streamingConfig,
        &pluginSettings, runtimeCgroups, kubeCfg.CgroupDriver, crOptions.DockershimRootDirectory,
        crOptions.DockerDisableSharedPID)
    if err != nil {
        return nil, err
    }
    // For now, the CRI shim redirects the streaming requests to the
    // kubelet, which handles the requests using DockerService..
    klet.criHandler = ds

    // The unix socket for kubelet <-> dockershim communication.
    glog.V(5).Infof("RemoteRuntimeEndpoint: %q, RemoteImageEndpoint: %q",
        remoteRuntimeEndpoint,
        remoteImageEndpoint)
    glog.V(2).Infof("Starting the GRPC server for the docker CRI shim.")
    server := dockerremote.NewDockerServer(remoteRuntimeEndpoint, ds)
    if err := server.Start(); err != nil {
        return nil, err
    }

创建 dockerservice 对象时初始化cniplugin

cniPlugins := cni.ProbeNetworkPlugins(pluginSettings.PluginConfDir, pluginSettings.PluginBinDir)
cniPlugins = append(cniPlugins, kubenet.NewPlugin(pluginSettings.PluginBinDir))

初始化cniplugin,会根据pluginDir查找符合条件的第一个 CNI config 文件,并以此 config 文件查找到对应的 CNI bin

func probeNetworkPluginsWithVendorCNIDirPrefix(pluginDir, binDir, vendorCNIDirPrefix string) []network.NetworkPlugin {
    if binDir == "" {
        binDir = DefaultCNIDir
    }
    plugin := &cniNetworkPlugin{
        defaultNetwork:     nil,
        loNetwork:          getLoNetwork(binDir, vendorCNIDirPrefix),
        execer:             utilexec.New(),
        pluginDir:          pluginDir,
        binDir:             binDir,
        vendorCNIDirPrefix: vendorCNIDirPrefix,
    }

    // sync NetworkConfig in best effort during probing.
    plugin.syncNetworkConfig()
    return []network.NetworkPlugin{plugin}
}
func (plugin *cniNetworkPlugin) syncNetworkConfig() {
    network, err := getDefaultCNINetwork(plugin.pluginDir, plugin.binDir, plugin.vendorCNIDirPrefix)
    if err != nil {
        glog.Warningf("Unable to update cni config: %s", err)
        return
    }
    plugin.setDefaultNetwork(network)
}
// plugin目录中找到符合.conf,.conflist,.json为后缀的文件,用文件名来排序,并从文件
// 名列表中找到符合cni 配置规则的plugin配置文件并返回。
func getDefaultCNINetwork(pluginDir, binDir, vendorCNIDirPrefix string) (*cniNetwork, error) {
    if pluginDir == "" {
        pluginDir = DefaultNetDir
    }
    files, err := libcni.ConfFiles(pluginDir, []string{".conf", ".conflist", ".json"})
    switch {
    case err != nil:
        return nil, err
    case len(files) == 0:
        return nil, fmt.Errorf("No networks found in %s", pluginDir)
    }

    sort.Strings(files)
    for _, confFile := range files {
        var confList *libcni.NetworkConfigList
        if strings.HasSuffix(confFile, ".conflist") {
            confList, err = libcni.ConfListFromFile(confFile)
            if err != nil {
                glog.Warningf("Error loading CNI config list file %s: %v", confFile, err)
                continue
            }
        } else {
            conf, err := libcni.ConfFromFile(confFile)
            if err != nil {
                glog.Warningf("Error loading CNI config file %s: %v", confFile, err)
                continue
            }
            // Ensure the config has a "type" so we know what plugin to run.
            // Also catches the case where somebody put a conflist into a conf file.
            if conf.Network.Type == "" {
                glog.Warningf("Error loading CNI config file %s: no 'type'; perhaps this is a .conflist?", confFile)
                continue
            }

            confList, err = libcni.ConfListFromConf(conf)
            if err != nil {
                glog.Warningf("Error converting CNI config file %s to list: %v", confFile, err)
                continue
            }
        }
        if len(confList.Plugins) == 0 {
            glog.Warningf("CNI config list %s has no networks, skipping", confFile)
            continue
        }
        confType := confList.Plugins[0].Network.Type

        // Search for vendor-specific plugins as well as default plugins in the CNI codebase.
        vendorDir := vendorCNIDir(vendorCNIDirPrefix, confType)
        cninet := &libcni.CNIConfig{
            Path: []string{vendorDir, binDir},
        }
        network := &cniNetwork{name: confList.Name, NetworkConfig: confList, CNIConfig: cninet}
        return network, nil
    }
    return nil, fmt.Errorf("No valid networks found in %s", pluginDir)
}

POD 创建来源

在分析 POD 创建的流程之前,我们先看下 kubelet 是怎么获取 POD 资源。 总结下来有三种 POD 来源:

  • 最常见的是 kubelet list & watch apiserver 获取 POD 资源的更新
  • 静态目录下 static POD
  • kubelet 提供的 http 服务
    后面两者都是 static POD, kubelet 为了能够在 apiserver 也能管理 static POD,在 apiserver 创建了 mirror POD。
// makePodSourceConfig 为kubelet 提供 pod update 事件来源,目前支持三种,监听url,
// 监听目录,watch apiserver,每种来源都有对应的channel
func makePodSourceConfig(kubeCfg *kubeletconfiginternal.KubeletConfiguration, kubeDeps *Dependencies, nodeName types.NodeName, bootstrapCheckpointPath string) (*config.PodConfig, error) {
    manifestURLHeader := make(http.Header)
    if len(kubeCfg.ManifestURLHeader) > 0 {
        for k, v := range kubeCfg.ManifestURLHeader {
            for i := range v {
                manifestURLHeader.Add(k, v[i])
            }
        }
    }

    // source of all configuration
    cfg := config.NewPodConfig(config.PodConfigNotificationIncremental, kubeDeps.Recorder)

    // define file config source
    if kubeCfg.PodManifestPath != "" {
        glog.Infof("Adding manifest path: %v", kubeCfg.PodManifestPath)
        config.NewSourceFile(kubeCfg.PodManifestPath, nodeName, kubeCfg.FileCheckFrequency.Duration, cfg.Channel(kubetypes.FileSource))
    }

    // define url config source
    if kubeCfg.ManifestURL != "" {
        glog.Infof("Adding manifest url %q with HTTP header %v", kubeCfg.ManifestURL, manifestURLHeader)
        config.NewSourceURL(kubeCfg.ManifestURL, manifestURLHeader, nodeName, kubeCfg.HTTPCheckFrequency.Duration, cfg.Channel(kubetypes.HTTPSource))
    }

    // Restore from the checkpoint path
    // NOTE: This MUST happen before creating the apiserver source
    // below, or the checkpoint would override the source of truth.

    var updatechannel chan<- interface{}
    if bootstrapCheckpointPath != "" {
        glog.Infof("Adding checkpoint path: %v", bootstrapCheckpointPath)
        updatechannel = cfg.Channel(kubetypes.ApiserverSource)
        err := cfg.Restore(bootstrapCheckpointPath, updatechannel)
        if err != nil {
            return nil, err
        }
    }

    if kubeDeps.KubeClient != nil {
        glog.Infof("Watching apiserver")
        if updatechannel == nil {
            updatechannel = cfg.Channel(kubetypes.ApiserverSource)
        }
        config.NewSourceApiserver(kubeDeps.KubeClient, nodeName, updatechannel)
    }
    return cfg, nil
}

之后每个pod来源的更新都会发送事件到podcfg的update channel

// syncLoop is the main loop for processing changes. It watches for changes from
// three channels (file, apiserver, and http) and creates a union of them. For
// any new change seen, will run a sync against desired state and running state. If
// no changes are seen to the configuration, will synchronize the last known desired
// state every sync-frequency seconds. Never returns.
func (kl *Kubelet) syncLoop(updates <-chan kubetypes.PodUpdate, handler SyncHandler) {
    glog.Info("Starting kubelet main sync loop.")
    // The resyncTicker wakes up kubelet to checks if there are any pod workers
    // that need to be sync'd. A one-second period is sufficient because the
    // sync interval is defaulted to 10s.
    syncTicker := time.NewTicker(time.Second)
    defer syncTicker.Stop()
    housekeepingTicker := time.NewTicker(housekeepingPeriod)
    defer housekeepingTicker.Stop()
    plegCh := kl.pleg.Watch()
    const (
        base   = 100 * time.Millisecond
        max    = 5 * time.Second
        factor = 2
    )
    duration := base
    for {
        if rs := kl.runtimeState.runtimeErrors(); len(rs) != 0 {
            glog.Infof("skipping pod synchronization - %v", rs)
            // exponential backoff
            time.Sleep(duration)
            duration = time.Duration(math.Min(float64(max), factor*float64(duration)))
            continue
        }
        // reset backoff if we have a success
        duration = base

        kl.syncLoopMonitor.Store(kl.clock.Now())
        if !kl.syncLoopIteration(updates, handler, syncTicker.C, housekeepingTicker.C, plegCh) {
            break
        }
        kl.syncLoopMonitor.Store(kl.clock.Now())
    }
}

POD create

func (kl *Kubelet) syncLoopIteration(configCh <-chan kubetypes.PodUpdate, handler SyncHandler,
    syncCh <-chan time.Time, housekeepingCh <-chan time.Time, plegCh <-chan *pleg.PodLifecycleEvent) bool {
    select {
    case u, open := <-configCh:
        // Update from a config source; dispatch it to the right handler
        // callback.
        if !open {
            glog.Errorf("Update channel is closed. Exiting the sync loop.")
            return false
        }

        switch u.Op {
        case kubetypes.ADD:
            glog.V(2).Infof("SyncLoop (ADD, %q): %q", u.Source, format.Pods(u.Pods))
            // After restarting, kubelet will get all existing pods through
            // ADD as if they are new pods. These pods will then go through the
            // admission process and *may* be rejected. This can be resolved
            // once we have checkpointing.
            handler.HandlePodAdditions(u.Pods)
        case kubetypes.UPDATE:
            glog.V(2).Infof("SyncLoop (UPDATE, %q): %q", u.Source, format.PodsWithDeletiontimestamps(u.Pods))
            handler.HandlePodUpdates(u.Pods)
        case kubetypes.REMOVE:
            glog.V(2).Infof("SyncLoop (REMOVE, %q): %q", u.Source, format.Pods(u.Pods))
            handler.HandlePodRemoves(u.Pods)
        case kubetypes.RECONCILE:
            glog.V(4).Infof("SyncLoop (RECONCILE, %q): %q", u.Source, format.Pods(u.Pods))
            handler.HandlePodReconcile(u.Pods)
        case kubetypes.DELETE:
            glog.V(2).Infof("SyncLoop (DELETE, %q): %q", u.Source, format.Pods(u.Pods))
            // DELETE is treated as a UPDATE because of graceful deletion.
            handler.HandlePodUpdates(u.Pods)
                ... ...
    return true
}

pod_works用于为pod update分配goroutine执行具体任务。
result := kl.containerRuntime.SyncPod(pod, apiPodStatus, podStatus, pullSecrets, kl.backOff)
syncpod时会调用createPodSandbox 来创建pause container(infrastructure container),pause pod 创建后所有的业务容器共享该pause 容器的网络。
在创建 pause 容器时调用如下方法配置网络,
err = ds.network.SetUpPod(config.GetMetadata().Namespace, config.GetMetadata().Name, cID, config.Annotations)

// 为了能够保证业务pod在异常退出时仍然能够保存网络信息,因此创建pause (infra)容器来共享网络配置
// pause container也叫做 infrastructure-container, 
// RunPodSandbox creates and starts a pod-level sandbox. Runtimes should ensure
// the sandbox is in ready state.
// For docker, PodSandbox is implemented by a container holding the network
// namespace for the pod.
// Note: docker doesn't use LogDirectory (yet).
func (ds *dockerService) RunPodSandbox(config *runtimeapi.PodSandboxConfig) (id string, err error) {
    // Step 1: Pull the image for the sandbox.
        ... ...
    // Step 2: Create the sandbox container.
        ... ....

    // Step 3: Create Sandbox Checkpoint.
        ... ...

    // Step 4: Start the sandbox container.
        ... ...

    // Step 5: Setup networking for the sandbox.
    // All pod networking is setup by a CNI plugin discovered at startup time.
    // This plugin assigns the pod ip, sets up routes inside the sandbox,
    // creates interfaces etc. In theory, its jurisdiction ends with pod
    // sandbox networking, but it might insert iptables rules or open ports
    // on the host as well, to satisfy parts of the pod spec that aren't
    // recognized by the CNI standard yet.
    cID := kubecontainer.BuildContainerID(runtimeName, createResp.ID)
    err = ds.network.SetUpPod(config.GetMetadata().Namespace, config.GetMetadata().Name, cID, config.Annotations)
    if err != nil {
        // TODO(random-liu): Do we need to teardown network here?
        if err := ds.client.StopContainer(createResp.ID, defaultSandboxGracePeriod); err != nil {
            glog.Warningf("Failed to stop sandbox container %q for pod %q: %v", createResp.ID, config.Metadata.Name, err)
        }
    }
    return createResp.ID, err
}

SetUpPod -> addToNetwork,cniNet.AddNetworkList 根据 CNI 执行 CNI binary,并将 CNI config 文件内容作为 stdin ,将podName, podNamespace, podSandboxID 等以 env 的形式传递给 CNI binary

func (plugin *cniNetworkPlugin) addToNetwork(network *cniNetwork, podName string, podNamespace string, podSandboxID kubecontainer.ContainerID, podNetnsPath string, annotations map[string]string) (cnitypes.Result, error) {
    rt, err := plugin.buildCNIRuntimeConf(podName, podNamespace, podSandboxID, podNetnsPath, annotations)
    if err != nil {
        glog.Errorf("Error adding network when building cni runtime conf: %v", err)
        return nil, err
    }

    netConf, cniNet := network.NetworkConfig, network.CNIConfig
    glog.V(4).Infof("About to add CNI network %v (type=%v)", netConf.Name, netConf.Plugins[0].Network.Type)
    res, err := cniNet.AddNetworkList(netConf, rt)
    if err != nil {
        glog.Errorf("Error adding network: %v", err)
        return nil, err
    }

    return res, nil
}

猜你喜欢

转载自www.cnblogs.com/haoqingchuan/p/8668746.html
cni