ZooKeeper基本原理

ZooKeeper简介

ZooKeeper是一个开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和命名服务等。

ZooKeeper设计目的

1.最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能。

2.可靠性:具有简单、健壮、良好的性能,如果消息m被到一台服务器接受,那么它将被所有的服务器接受。

3.实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。但由于网络延时等原因,Zookeeper不能保证两个客户端能同时得到刚更新的数据,如果需要最新数据,应该在读数据之前调用sync()接口。

4.等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待。

5.原子性:更新只能成功或者失败,没有中间状态。

6.顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面。

ZooKeeper数据模型

Zookeeper会维护一个具有层次关系的数据结构,它非常类似于一个标准的文件系统,如图所示:

Zookeeper这种数据结构有如下这些特点:

1)每个子目录项如NameService都被称作为znode,这个znode是被它所在的路径唯一标识,如Server1这个znode的标识为/NameService/Server1。

2)znode可以有子节点目录,并且每个znode可以存储数据,注意EPHEMERAL(临时的)类型的目录节点不能有子节点目录。

3)znode是有版本的(version),每个znode中存储的数据可以有多个版本,也就是一个访问路径中可以存储多份数据,version号自动增加。

4)znode可以是临时节点(EPHEMERAL),可以是持久节点(PERSISTENT)。如果创建的是临时节点,一旦创建这个EPHEMERALznode的客户端与服务器失去联系,这个znode也将自动删除,Zookeeper的客户端和服务器通信采用长连接方式,每个客户端和服务器通过心跳来保持连接,这个连接状态称为session,如果znode是临时节点,这个session失效,znode也就删除了。

5)znode的目录名可以自动编号,如App1已经存在,再创建的话,将会自动命名为App2。

6)znode可以被监控,包括这个目录节点中存储的数据的修改,子节点目录的变化等,一旦变化可以通知设置监控的客户端,这个是Zookeeper的核心特性,Zookeeper的很多功能都是基于这个特性实现的。

7)ZXID:每次对Zookeeper的状态的改变都会产生一个zxid(ZooKeeper Transaction Id),zxid是全局有序的,如果zxid1小于zxid2,则zxid1在zxid2之前发生。

ZooKeeper Session

Client和Zookeeper集群建立连接,整个session状态变化如图所示:

如果Client因为Timeout和Zookeeper Server失去连接,client处在CONNECTING状态,会自动尝试再去连接Server,如果在session有效期内再次成功连接到某个Server,则回到CONNECTED状态。

注意:如果因为网络状态不好,client和Server失去联系,client会停留在当前状态,会尝试主动再次连接Zookeeper Server。client不能宣称自己的session expired,session expired是由Zookeeper Server来决定的,client可以选择自己主动关闭session。

ZooKeeper角色

Zookeeper中的角色主要有以下三类,如下表所示:

1、领导者(leader),负责进行投票的发起和决议,更新系统状态

2、学习者(learner),包括跟随者(follower)和观察者(observer),follower用于接受客户端请求并想客户端返回结果,在选主过程中参与投票

3、Observer可以接受客户端连接,将写请求转发给leader,但observer不参加投票过程,只同步leader的状态,observer的目的是为了扩展系统,提高读取速度

ZooKeeper的工作原理

Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议(ZooKeeper Atomic Broadcast protocol)。Zab协议有两种模式,它们分别是恢复模式(Recovery选主)和广播模式(Broadcast同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。

为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。

每个Server在工作过程中有4种状态:

LOOKING:当前Server不知道leader是谁,正在搜寻。

LEADING:当前Server即为选举出来的leader。

FOLLOWING:leader已经选举出来,当前Server与之同步。

OBSERVING:observer的行为在大多数情况下与follower完全一致,但是他们不参加选举和投票,而仅仅接受(observing)选举和投票的结果。

Leader选举

当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:

1.选举线程由当前Server发起选举的线程担任,其主要功能是对投票结果进行统计,并选出推荐的Server;

2.选举线程首先向所有Server发起一次询问(包括自己);

3.选举线程收到回复后,验证是否是自己发起的询问(验证zxid是否一致),然后获取对方的id(myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息(id,zxid),并将这些信息存储到当次选举的投票记录表中;

4.收到所有Server回复以后,就计算出zxid最大的那个Server,并将这个Server相关信息设置成下一次要投票的Server;

5.线程将当前zxid最大的Server设置为当前Server要推荐的Leader,如果此时获胜的Server获得n/2 + 1的Server票数,设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态,否则,继续这个过程,直到leader被选举出来。

通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1.

每个Server启动后都会重复以上流程。在恢复模式下,如果是刚从崩溃状态恢复的或者刚启动的server还会从磁盘快照中恢复数据和会话信息,zk会记录事务日志并定期进行快照,方便在恢复时进行状态恢复。

fast paxos流程是在选举过程中,某Server首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息,重复这个流程,最后一定能选举出Leader。

zookeeper数据同步过程

选完leader以后,zk就进入状态同步过程。

1. leader等待server连接;

2 .Follower连接leader,将最大的zxid发送给leader;

3 .Leader根据follower的zxid确定同步点;

4 .完成同步后通知follower 已经成为uptodate状态;

5 .Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。

流程图如下所示:

Leader工作流程

Leader主要有三个功能:

1.恢复数据;

2.维持与follower的心跳,接收follower请求并判断follower的请求消息类型;

3.follower的消息类型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息,根据不同的消息类型,进行不同的处理。

PING消息是指follower的心跳信息;REQUEST消息是follower发送的提议信息,包括写请求及同步请求;

ACK消息是follower的对提议的回复,超过半数的follower通过,则commit该提议;

REVALIDATE消息是用来延长SESSION有效时间。

Follower工作流程

Follower主要有四个功能:

1. 向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);

2.接收Leader消息并进行处理;

3.接收Client的请求,如果为写请求,发送给Leader进行投票;

4.返回Client结果。

Follower的消息循环处理如下几种来自Leader的消息:

1.PING消息:心跳消息

2.PROPOSAL消息:Leader发起的提案,要求Follower投票

3.COMMIT消息:服务器端最新一次提案的信息

4.UPTODATE消息:表明同步完成

5.REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息

6.SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。

Follower的工作流程简图如下所示,在实际实现中,Follower是通过5个线程来实现功能的。

Zab: 广播状态更新

Zookeeper Server接收到一次request,如果是follower,会转发给leader,Leader执行请求并通过Transaction的形式广播这次执行。Zookeeper集群如何决定一个Transaction是否被commit执行?通过“两段提交协议”(a two-phase commit):

    1. Leader给所有的follower发送一个PROPOSAL消息。

    2. 一个follower接收到这次PROPOSAL消息,写到磁盘,发送给leader一个ACK消息,告知已经收到。

    3. 当Leader收到法定人数(quorum)的follower的ACK时候,发送commit消息执行。

Zab协议保证:

    1. 如果leader以T1和T2的顺序广播,那么所有的Server必须先执行T1,再执行T2。

    2. 如果任意一个Server以T1、T2的顺序commit执行,其他所有的Server也必须以T1、T2的顺序执行。

“两段提交协议”最大的问题是如果Leader发送了PROPOSAL消息后crash或暂时失去连接,会导致整个集群处在一种不确定的状态(follower不知道该放弃这次提交还是执行提交)。Zookeeper这时会选出新的leader,请求处理也会移到新的leader上,不同的leader由不同的epoch标识。切换Leader时,需要解决下面两个问题:

Never forget delivered messages

Leader在COMMIT投递到任何一台follower之前crash,只有它自己commit了。新Leader必须保证这个事务也必须commit。

Let go of messages that are skipped

Leader产生某个proposal,但是在crash之前,没有follower看到这个proposal。该server恢复时,必须丢弃这个proposal。

Zookeeper会尽量保证不会同时有2个活动的Leader,因为2个不同的Leader会导致集群处在一种不一致的状态,所以Zab协议同时保证:

    1. 在新的leader广播Transaction之前,先前Leader commit的Transaction都会先执行。

    2. 在任意时刻,都不会有2个Server同时有法定人数(quorum)的支持者。

        这里的quorum是一半以上的Server数目,确切的说是有投票权力的Server(不包括Observer)。

猜你喜欢

转载自www.cnblogs.com/yifanSJ/p/9101440.html