从一个经典案例看优化mapred.map.tasks的重要性

--平台启用了输入文件和输出文件的自动合并, 缩小合并大小为64M,增加map数

set hive.mapred.mode=nonstrict;
set mapred.map.tasks=132;
set mapred.reduce.tasks=337;
set hive.merge.size.per.task=128000000;       
set hive.merge.smallfiles.avgsize=128000000;  
set mapreduce.input.fileinputformat.split.minsize.per.node=16000000;  
set mapreduce.input.fileinputformat.split.minsize.per.rack=16000000;  

我所在公司所使用的生产Hive环境的几个参数配置如下:
dfs.block.size=268435456
hive.merge.mapredfiles=true
hive.merge.mapfiles=true
hive.merge.size.per.task=256000000
mapred.map.tasks=2 

因为合并小文件默认为true,而dfs.block.size与hive.merge.size.per.task的搭配使得合并后的绝大部分文件都在300MB左右。

CASE 1:

现在我们假设有3个300MB大小的文件,那么goalsize = min(900MB/2,256MB) = 256MB (具体如何计算map数请参见http://blog.sina.com.cn/s/blog_6ff05a2c010178qd.html)
所以整个JOB会有6个map,其中3个map分别处理256MB的数据,还有3个map分别处理44MB的数据。
这时候木桶效应就来了,整个JOB的map阶段的执行时间不是看最短的1个map的执行时间,而是看最长的1个map的执行时间。所以,虽然有3个map分别只处理44MB的数据,可以很快跑完,但它们还是要等待另外3个处理256MB的map。显然,处理256MB的3个map拖了整个JOB的后腿。

CASE 2:

如果我们把mapred.map.tasks设置成6,再来看一下有什么变化:
goalsize = min(900MB/6,256MB) = 150MB
整个JOB同样会分配6个map来处理,每个map处理150MB的数据,非常均匀,谁都不会拖后腿,最合理地分配了资源,执行时间大约为CASE 1的59%(150/256) 

案例分析:

虽然mapred.map.tasks从2调整到了6,但是CASE 2并没有比CASE 1多用map资源,同样都是使用6个map。而CASE 2的执行时间约为CASE 1执行时间的59%。
从这个案例可以看出,对mapred.map.tasks进行自动化的优化设置其实是可以很明显地提高作业执行效率的。

发布了77 篇原创文章 · 获赞 182 · 访问量 58万+

猜你喜欢

转载自blog.csdn.net/hellojoy/article/details/104807181